Two-phase flow measurement method, device and system based on aggregation coefficient entropy and network
The invention provides a two-phase flow measurement method, device and system based on aggregation coefficient entropy and a network. The method comprises the following steps: acquiring measurement data of a multi-electrode sensor on a pipeline; performing multi-scale transformation on the measureme...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG JIANBO CHEN YUNGANG LI MENGYU MENG QINGDIAN WANG RUIQI |
description | The invention provides a two-phase flow measurement method, device and system based on aggregation coefficient entropy and a network. The method comprises the following steps: acquiring measurement data of a multi-electrode sensor on a pipeline; performing multi-scale transformation on the measurement data, and performing phase-space reconstruction on the measurement data after the multi-scale transformation; constructing a multi-element and multi-scale complex network by using the measurement data subjected to multi-scale transformation and phase-space reconstruction, and obtaining an aggregation coefficient of nodes in the multi-element and multi-scale complex network; calculating an aggregation coefficient entropy according to the aggregation coefficient; inputting the adjacency matrix of the aggregation coefficient entropy and the adjacency matrix of the measurement data into the trained neural network; the neural network comprises a convolutional layer, a pooling layer and a full connection layer; and ob |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115618182A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115618182A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115618182A3</originalsourceid><addsrcrecordid>eNqNi7EOwiAURbs4GPUfnrsd0Gi6mkbj5NTdIFxaYssjgDb9e9H4AQ439wznzAvbjFz6TkaQ6XmkATI-Awa4lDl1rDek8bIKJJ2mOMWEge7Z18SOZNsGtDLZzIphjFX2k-YF9tO3cUgjh8eymBnZR6x-vyjW51NTX0p4viF6qZDNW30VYn8Qlai2x90_zhtZzkDu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Two-phase flow measurement method, device and system based on aggregation coefficient entropy and network</title><source>esp@cenet</source><creator>ZHANG JIANBO ; CHEN YUNGANG ; LI MENGYU ; MENG QINGDIAN ; WANG RUIQI</creator><creatorcontrib>ZHANG JIANBO ; CHEN YUNGANG ; LI MENGYU ; MENG QINGDIAN ; WANG RUIQI</creatorcontrib><description>The invention provides a two-phase flow measurement method, device and system based on aggregation coefficient entropy and a network. The method comprises the following steps: acquiring measurement data of a multi-electrode sensor on a pipeline; performing multi-scale transformation on the measurement data, and performing phase-space reconstruction on the measurement data after the multi-scale transformation; constructing a multi-element and multi-scale complex network by using the measurement data subjected to multi-scale transformation and phase-space reconstruction, and obtaining an aggregation coefficient of nodes in the multi-element and multi-scale complex network; calculating an aggregation coefficient entropy according to the aggregation coefficient; inputting the adjacency matrix of the aggregation coefficient entropy and the adjacency matrix of the measurement data into the trained neural network; the neural network comprises a convolutional layer, a pooling layer and a full connection layer; and ob</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230117&DB=EPODOC&CC=CN&NR=115618182A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230117&DB=EPODOC&CC=CN&NR=115618182A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG JIANBO</creatorcontrib><creatorcontrib>CHEN YUNGANG</creatorcontrib><creatorcontrib>LI MENGYU</creatorcontrib><creatorcontrib>MENG QINGDIAN</creatorcontrib><creatorcontrib>WANG RUIQI</creatorcontrib><title>Two-phase flow measurement method, device and system based on aggregation coefficient entropy and network</title><description>The invention provides a two-phase flow measurement method, device and system based on aggregation coefficient entropy and a network. The method comprises the following steps: acquiring measurement data of a multi-electrode sensor on a pipeline; performing multi-scale transformation on the measurement data, and performing phase-space reconstruction on the measurement data after the multi-scale transformation; constructing a multi-element and multi-scale complex network by using the measurement data subjected to multi-scale transformation and phase-space reconstruction, and obtaining an aggregation coefficient of nodes in the multi-element and multi-scale complex network; calculating an aggregation coefficient entropy according to the aggregation coefficient; inputting the adjacency matrix of the aggregation coefficient entropy and the adjacency matrix of the measurement data into the trained neural network; the neural network comprises a convolutional layer, a pooling layer and a full connection layer; and ob</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EOwiAURbs4GPUfnrsd0Gi6mkbj5NTdIFxaYssjgDb9e9H4AQ439wznzAvbjFz6TkaQ6XmkATI-Awa4lDl1rDek8bIKJJ2mOMWEge7Z18SOZNsGtDLZzIphjFX2k-YF9tO3cUgjh8eymBnZR6x-vyjW51NTX0p4viF6qZDNW30VYn8Qlai2x90_zhtZzkDu</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>ZHANG JIANBO</creator><creator>CHEN YUNGANG</creator><creator>LI MENGYU</creator><creator>MENG QINGDIAN</creator><creator>WANG RUIQI</creator><scope>EVB</scope></search><sort><creationdate>20230117</creationdate><title>Two-phase flow measurement method, device and system based on aggregation coefficient entropy and network</title><author>ZHANG JIANBO ; CHEN YUNGANG ; LI MENGYU ; MENG QINGDIAN ; WANG RUIQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115618182A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG JIANBO</creatorcontrib><creatorcontrib>CHEN YUNGANG</creatorcontrib><creatorcontrib>LI MENGYU</creatorcontrib><creatorcontrib>MENG QINGDIAN</creatorcontrib><creatorcontrib>WANG RUIQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG JIANBO</au><au>CHEN YUNGANG</au><au>LI MENGYU</au><au>MENG QINGDIAN</au><au>WANG RUIQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Two-phase flow measurement method, device and system based on aggregation coefficient entropy and network</title><date>2023-01-17</date><risdate>2023</risdate><abstract>The invention provides a two-phase flow measurement method, device and system based on aggregation coefficient entropy and a network. The method comprises the following steps: acquiring measurement data of a multi-electrode sensor on a pipeline; performing multi-scale transformation on the measurement data, and performing phase-space reconstruction on the measurement data after the multi-scale transformation; constructing a multi-element and multi-scale complex network by using the measurement data subjected to multi-scale transformation and phase-space reconstruction, and obtaining an aggregation coefficient of nodes in the multi-element and multi-scale complex network; calculating an aggregation coefficient entropy according to the aggregation coefficient; inputting the adjacency matrix of the aggregation coefficient entropy and the adjacency matrix of the measurement data into the trained neural network; the neural network comprises a convolutional layer, a pooling layer and a full connection layer; and ob</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115618182A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Two-phase flow measurement method, device and system based on aggregation coefficient entropy and network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20JIANBO&rft.date=2023-01-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115618182A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |