Robust teaching knowledge point identification method and device based on adversarial learning

The invention relates to a robust teaching knowledge point identification method and device based on adversarial learning. The method is improved in three aspects: 1) data production: processing, summarizing and concluding electronic textbook data of a computer network to construct a knowledge point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WENG JINTA, YAN JIJIE, LIN JINTIAN, HU YUE, XIE YUQIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WENG JINTA
YAN JIJIE
LIN JINTIAN
HU YUE
XIE YUQIANG
description The invention relates to a robust teaching knowledge point identification method and device based on adversarial learning. The method is improved in three aspects: 1) data production: processing, summarizing and concluding electronic textbook data of a computer network to construct a knowledge point identification data set of computer network subjects, and taking the knowledge point identification data set as input of a model; 2) model improvement: carrying out model structure modification on the basis of an ALBERT and TextCNN combined model, combining information of an entity in an input sentence in hidden layer output of the ALBERT, and improving the capability of capturing the entity information of the model; and 3) method improvement: carrying out new improvement on the training process of the model, adding adversarial training, and effectively improving the generalization ability and robustness of the model. According to the method, a combination model of ALBERT and TextCNN is applied to a knowledge poin
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115587180A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115587180A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115587180A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QCCQYK2EhQrC7E2THZ-ksF1NmTXeH1TeACrV7zHm2ePW6jfMVECu06tpaeFj4e0oD6oJVKBJW3UcdJg9ELqghCbkGBUB6o5QmhSLCOGyIOyJw8ebNots1nDPmL14yJbn0_38rJBHyrEnh0MqSqveV4Uh31-2B53_zRfe0M9AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Robust teaching knowledge point identification method and device based on adversarial learning</title><source>esp@cenet</source><creator>WENG JINTA ; YAN JIJIE ; LIN JINTIAN ; HU YUE ; XIE YUQIANG</creator><creatorcontrib>WENG JINTA ; YAN JIJIE ; LIN JINTIAN ; HU YUE ; XIE YUQIANG</creatorcontrib><description>The invention relates to a robust teaching knowledge point identification method and device based on adversarial learning. The method is improved in three aspects: 1) data production: processing, summarizing and concluding electronic textbook data of a computer network to construct a knowledge point identification data set of computer network subjects, and taking the knowledge point identification data set as input of a model; 2) model improvement: carrying out model structure modification on the basis of an ALBERT and TextCNN combined model, combining information of an entity in an input sentence in hidden layer output of the ALBERT, and improving the capability of capturing the entity information of the model; and 3) method improvement: carrying out new improvement on the training process of the model, adding adversarial training, and effectively improving the generalization ability and robustness of the model. According to the method, a combination model of ALBERT and TextCNN is applied to a knowledge poin</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230110&amp;DB=EPODOC&amp;CC=CN&amp;NR=115587180A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230110&amp;DB=EPODOC&amp;CC=CN&amp;NR=115587180A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WENG JINTA</creatorcontrib><creatorcontrib>YAN JIJIE</creatorcontrib><creatorcontrib>LIN JINTIAN</creatorcontrib><creatorcontrib>HU YUE</creatorcontrib><creatorcontrib>XIE YUQIANG</creatorcontrib><title>Robust teaching knowledge point identification method and device based on adversarial learning</title><description>The invention relates to a robust teaching knowledge point identification method and device based on adversarial learning. The method is improved in three aspects: 1) data production: processing, summarizing and concluding electronic textbook data of a computer network to construct a knowledge point identification data set of computer network subjects, and taking the knowledge point identification data set as input of a model; 2) model improvement: carrying out model structure modification on the basis of an ALBERT and TextCNN combined model, combining information of an entity in an input sentence in hidden layer output of the ALBERT, and improving the capability of capturing the entity information of the model; and 3) method improvement: carrying out new improvement on the training process of the model, adding adversarial training, and effectively improving the generalization ability and robustness of the model. According to the method, a combination model of ALBERT and TextCNN is applied to a knowledge poin</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QCCQYK2EhQrC7E2THZ-ksF1NmTXeH1TeACrV7zHm2ePW6jfMVECu06tpaeFj4e0oD6oJVKBJW3UcdJg9ELqghCbkGBUB6o5QmhSLCOGyIOyJw8ebNots1nDPmL14yJbn0_38rJBHyrEnh0MqSqveV4Uh31-2B53_zRfe0M9AQ</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>WENG JINTA</creator><creator>YAN JIJIE</creator><creator>LIN JINTIAN</creator><creator>HU YUE</creator><creator>XIE YUQIANG</creator><scope>EVB</scope></search><sort><creationdate>20230110</creationdate><title>Robust teaching knowledge point identification method and device based on adversarial learning</title><author>WENG JINTA ; YAN JIJIE ; LIN JINTIAN ; HU YUE ; XIE YUQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115587180A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WENG JINTA</creatorcontrib><creatorcontrib>YAN JIJIE</creatorcontrib><creatorcontrib>LIN JINTIAN</creatorcontrib><creatorcontrib>HU YUE</creatorcontrib><creatorcontrib>XIE YUQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WENG JINTA</au><au>YAN JIJIE</au><au>LIN JINTIAN</au><au>HU YUE</au><au>XIE YUQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Robust teaching knowledge point identification method and device based on adversarial learning</title><date>2023-01-10</date><risdate>2023</risdate><abstract>The invention relates to a robust teaching knowledge point identification method and device based on adversarial learning. The method is improved in three aspects: 1) data production: processing, summarizing and concluding electronic textbook data of a computer network to construct a knowledge point identification data set of computer network subjects, and taking the knowledge point identification data set as input of a model; 2) model improvement: carrying out model structure modification on the basis of an ALBERT and TextCNN combined model, combining information of an entity in an input sentence in hidden layer output of the ALBERT, and improving the capability of capturing the entity information of the model; and 3) method improvement: carrying out new improvement on the training process of the model, adding adversarial training, and effectively improving the generalization ability and robustness of the model. According to the method, a combination model of ALBERT and TextCNN is applied to a knowledge poin</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115587180A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Robust teaching knowledge point identification method and device based on adversarial learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WENG%20JINTA&rft.date=2023-01-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115587180A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true