Microbial fertilizer production quality evaluation system based on artificial intelligence

The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficienc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU PIAO, MENG FANKAI, DUAN QIHU, ZHAO YANLIANG, XU RANRAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU PIAO
MENG FANKAI
DUAN QIHU
ZHAO YANLIANG
XU RANRAN
description The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficiency and tedious data statistics process of the existing microbial fertilizer production quality evaluation system. Comprising a pre-detection module, a cultivation analysis module, a quality monitoring module, a cultivation management module and a storage module, the pre-detection module, the cultivation analysis module and the cultivation management module are sequentially in one-way connection, and the quality monitoring module is in one-way connection with the cultivation analysis module and the cultivation management module. The storage module is in one-way connection with the pre-detection module and the quality monitoring module; according to the invention, the culture environment can be detected and analyzed b
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115575583A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115575583A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115575583A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAURLNxIeod4gFclBJ0K0VxoytXbspvOpEPv0lNUqGe3ioewNUwj3kzV7cz2xgaJtEOMbPwC1H3MbSDzRy8fgwknEeNJ8lAX5TGlNHphhJaPXWaPMf288E-Q4Tv8BZLNXMkCatfLtT6eLhWpw36UCP1ZOGR6-pSFMZsjdmV-_KfzRvUWDxX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Microbial fertilizer production quality evaluation system based on artificial intelligence</title><source>esp@cenet</source><creator>XU PIAO ; MENG FANKAI ; DUAN QIHU ; ZHAO YANLIANG ; XU RANRAN</creator><creatorcontrib>XU PIAO ; MENG FANKAI ; DUAN QIHU ; ZHAO YANLIANG ; XU RANRAN</creatorcontrib><description>The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficiency and tedious data statistics process of the existing microbial fertilizer production quality evaluation system. Comprising a pre-detection module, a cultivation analysis module, a quality monitoring module, a cultivation management module and a storage module, the pre-detection module, the cultivation analysis module and the cultivation management module are sequentially in one-way connection, and the quality monitoring module is in one-way connection with the cultivation analysis module and the cultivation management module. The storage module is in one-way connection with the pre-detection module and the quality monitoring module; according to the invention, the culture environment can be detected and analyzed b</description><language>chi ; eng</language><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230106&amp;DB=EPODOC&amp;CC=CN&amp;NR=115575583A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230106&amp;DB=EPODOC&amp;CC=CN&amp;NR=115575583A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU PIAO</creatorcontrib><creatorcontrib>MENG FANKAI</creatorcontrib><creatorcontrib>DUAN QIHU</creatorcontrib><creatorcontrib>ZHAO YANLIANG</creatorcontrib><creatorcontrib>XU RANRAN</creatorcontrib><title>Microbial fertilizer production quality evaluation system based on artificial intelligence</title><description>The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficiency and tedious data statistics process of the existing microbial fertilizer production quality evaluation system. Comprising a pre-detection module, a cultivation analysis module, a quality monitoring module, a cultivation management module and a storage module, the pre-detection module, the cultivation analysis module and the cultivation management module are sequentially in one-way connection, and the quality monitoring module is in one-way connection with the cultivation analysis module and the cultivation management module. The storage module is in one-way connection with the pre-detection module and the quality monitoring module; according to the invention, the culture environment can be detected and analyzed b</description><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAURLNxIeod4gFclBJ0K0VxoytXbspvOpEPv0lNUqGe3ioewNUwj3kzV7cz2xgaJtEOMbPwC1H3MbSDzRy8fgwknEeNJ8lAX5TGlNHphhJaPXWaPMf288E-Q4Tv8BZLNXMkCatfLtT6eLhWpw36UCP1ZOGR6-pSFMZsjdmV-_KfzRvUWDxX</recordid><startdate>20230106</startdate><enddate>20230106</enddate><creator>XU PIAO</creator><creator>MENG FANKAI</creator><creator>DUAN QIHU</creator><creator>ZHAO YANLIANG</creator><creator>XU RANRAN</creator><scope>EVB</scope></search><sort><creationdate>20230106</creationdate><title>Microbial fertilizer production quality evaluation system based on artificial intelligence</title><author>XU PIAO ; MENG FANKAI ; DUAN QIHU ; ZHAO YANLIANG ; XU RANRAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115575583A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>XU PIAO</creatorcontrib><creatorcontrib>MENG FANKAI</creatorcontrib><creatorcontrib>DUAN QIHU</creatorcontrib><creatorcontrib>ZHAO YANLIANG</creatorcontrib><creatorcontrib>XU RANRAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU PIAO</au><au>MENG FANKAI</au><au>DUAN QIHU</au><au>ZHAO YANLIANG</au><au>XU RANRAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Microbial fertilizer production quality evaluation system based on artificial intelligence</title><date>2023-01-06</date><risdate>2023</risdate><abstract>The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficiency and tedious data statistics process of the existing microbial fertilizer production quality evaluation system. Comprising a pre-detection module, a cultivation analysis module, a quality monitoring module, a cultivation management module and a storage module, the pre-detection module, the cultivation analysis module and the cultivation management module are sequentially in one-way connection, and the quality monitoring module is in one-way connection with the cultivation analysis module and the cultivation management module. The storage module is in one-way connection with the pre-detection module and the quality monitoring module; according to the invention, the culture environment can be detected and analyzed b</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115575583A
source esp@cenet
subjects INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
TESTING
title Microbial fertilizer production quality evaluation system based on artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20PIAO&rft.date=2023-01-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115575583A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true