Microbial fertilizer production quality evaluation system based on artificial intelligence
The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficienc...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU PIAO MENG FANKAI DUAN QIHU ZHAO YANLIANG XU RANRAN |
description | The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficiency and tedious data statistics process of the existing microbial fertilizer production quality evaluation system. Comprising a pre-detection module, a cultivation analysis module, a quality monitoring module, a cultivation management module and a storage module, the pre-detection module, the cultivation analysis module and the cultivation management module are sequentially in one-way connection, and the quality monitoring module is in one-way connection with the cultivation analysis module and the cultivation management module. The storage module is in one-way connection with the pre-detection module and the quality monitoring module; according to the invention, the culture environment can be detected and analyzed b |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115575583A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115575583A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115575583A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAURLNxIeod4gFclBJ0K0VxoytXbspvOpEPv0lNUqGe3ioewNUwj3kzV7cz2xgaJtEOMbPwC1H3MbSDzRy8fgwknEeNJ8lAX5TGlNHphhJaPXWaPMf288E-Q4Tv8BZLNXMkCatfLtT6eLhWpw36UCP1ZOGR6-pSFMZsjdmV-_KfzRvUWDxX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Microbial fertilizer production quality evaluation system based on artificial intelligence</title><source>esp@cenet</source><creator>XU PIAO ; MENG FANKAI ; DUAN QIHU ; ZHAO YANLIANG ; XU RANRAN</creator><creatorcontrib>XU PIAO ; MENG FANKAI ; DUAN QIHU ; ZHAO YANLIANG ; XU RANRAN</creatorcontrib><description>The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficiency and tedious data statistics process of the existing microbial fertilizer production quality evaluation system. Comprising a pre-detection module, a cultivation analysis module, a quality monitoring module, a cultivation management module and a storage module, the pre-detection module, the cultivation analysis module and the cultivation management module are sequentially in one-way connection, and the quality monitoring module is in one-way connection with the cultivation analysis module and the cultivation management module. The storage module is in one-way connection with the pre-detection module and the quality monitoring module; according to the invention, the culture environment can be detected and analyzed b</description><language>chi ; eng</language><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230106&DB=EPODOC&CC=CN&NR=115575583A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230106&DB=EPODOC&CC=CN&NR=115575583A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU PIAO</creatorcontrib><creatorcontrib>MENG FANKAI</creatorcontrib><creatorcontrib>DUAN QIHU</creatorcontrib><creatorcontrib>ZHAO YANLIANG</creatorcontrib><creatorcontrib>XU RANRAN</creatorcontrib><title>Microbial fertilizer production quality evaluation system based on artificial intelligence</title><description>The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficiency and tedious data statistics process of the existing microbial fertilizer production quality evaluation system. Comprising a pre-detection module, a cultivation analysis module, a quality monitoring module, a cultivation management module and a storage module, the pre-detection module, the cultivation analysis module and the cultivation management module are sequentially in one-way connection, and the quality monitoring module is in one-way connection with the cultivation analysis module and the cultivation management module. The storage module is in one-way connection with the pre-detection module and the quality monitoring module; according to the invention, the culture environment can be detected and analyzed b</description><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAURLNxIeod4gFclBJ0K0VxoytXbspvOpEPv0lNUqGe3ioewNUwj3kzV7cz2xgaJtEOMbPwC1H3MbSDzRy8fgwknEeNJ8lAX5TGlNHphhJaPXWaPMf288E-Q4Tv8BZLNXMkCatfLtT6eLhWpw36UCP1ZOGR6-pSFMZsjdmV-_KfzRvUWDxX</recordid><startdate>20230106</startdate><enddate>20230106</enddate><creator>XU PIAO</creator><creator>MENG FANKAI</creator><creator>DUAN QIHU</creator><creator>ZHAO YANLIANG</creator><creator>XU RANRAN</creator><scope>EVB</scope></search><sort><creationdate>20230106</creationdate><title>Microbial fertilizer production quality evaluation system based on artificial intelligence</title><author>XU PIAO ; MENG FANKAI ; DUAN QIHU ; ZHAO YANLIANG ; XU RANRAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115575583A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>XU PIAO</creatorcontrib><creatorcontrib>MENG FANKAI</creatorcontrib><creatorcontrib>DUAN QIHU</creatorcontrib><creatorcontrib>ZHAO YANLIANG</creatorcontrib><creatorcontrib>XU RANRAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU PIAO</au><au>MENG FANKAI</au><au>DUAN QIHU</au><au>ZHAO YANLIANG</au><au>XU RANRAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Microbial fertilizer production quality evaluation system based on artificial intelligence</title><date>2023-01-06</date><risdate>2023</risdate><abstract>The invention belongs to the field of microbial fertilizers, relates to a quality detection technology, and particularly relates to a microbial fertilizer production quality evaluation system based on artificial intelligence, which is used for solving the problems of low quality monitoring efficiency and tedious data statistics process of the existing microbial fertilizer production quality evaluation system. Comprising a pre-detection module, a cultivation analysis module, a quality monitoring module, a cultivation management module and a storage module, the pre-detection module, the cultivation analysis module and the cultivation management module are sequentially in one-way connection, and the quality monitoring module is in one-way connection with the cultivation analysis module and the cultivation management module. The storage module is in one-way connection with the pre-detection module and the quality monitoring module; according to the invention, the culture environment can be detected and analyzed b</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115575583A |
source | esp@cenet |
subjects | INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES MEASURING PHYSICS TESTING |
title | Microbial fertilizer production quality evaluation system based on artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20PIAO&rft.date=2023-01-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115575583A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |