Visible light multi-view image three-dimensional reconstruction method based on deep learning

The invention provides a visible light multi-view image three-dimensional reconstruction method based on deep learning based on improvement of an MVSNet network. A batch normalization layer and a nonlinear activation function layer in the network are replaced by a fused Inplace-ABN layer, so that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SONG YIYUN, LENG GENG, LUO XIN, WEI ZUQI, FENG QIAN, XU WENBO, WU YUXUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SONG YIYUN
LENG GENG
LUO XIN
WEI ZUQI
FENG QIAN
XU WENBO
WU YUXUAN
description The invention provides a visible light multi-view image three-dimensional reconstruction method based on deep learning based on improvement of an MVSNet network. A batch normalization layer and a nonlinear activation function layer in the network are replaced by a fused Inplace-ABN layer, so that the occupation amount of a video memory is reduced. And a weighted mean measurement method based on grouping similarity is designed to reduce the feature dimension of the cost body, so that a more lightweight cost body is obtained, network parameters are compressed, and the calculation amount and the video memory consumption are reduced. In order to solve the problem that the resolution of a depth map is lower than that of an input image due to the fact that an MVSNet network uses a low-scale feature map, a feature pyramid module is used for extracting a multi-scale feature map, and staged and multi-scale iterative optimization depth estimation is designed. On the premise of ensuring the precision, the average number
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115564888A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115564888A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115564888A3</originalsourceid><addsrcrecordid>eNqNij0KwkAUBrexEPUOzwOkCBpJG4JiZSV2Eja7n8mD_Qm7L3p9U3gAq2GGWavngzP3DuR4GIX87ISLN-ND7PUAkjEBhWWPkDkG7SjBxJAlzUaWQB4yRku9zrC0uAUmctApcBi2avXSLmP340btL-d7ey0wxQ550gYB0rW3sqyq07Gu6-bwz_MFOW88wQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Visible light multi-view image three-dimensional reconstruction method based on deep learning</title><source>esp@cenet</source><creator>SONG YIYUN ; LENG GENG ; LUO XIN ; WEI ZUQI ; FENG QIAN ; XU WENBO ; WU YUXUAN</creator><creatorcontrib>SONG YIYUN ; LENG GENG ; LUO XIN ; WEI ZUQI ; FENG QIAN ; XU WENBO ; WU YUXUAN</creatorcontrib><description>The invention provides a visible light multi-view image three-dimensional reconstruction method based on deep learning based on improvement of an MVSNet network. A batch normalization layer and a nonlinear activation function layer in the network are replaced by a fused Inplace-ABN layer, so that the occupation amount of a video memory is reduced. And a weighted mean measurement method based on grouping similarity is designed to reduce the feature dimension of the cost body, so that a more lightweight cost body is obtained, network parameters are compressed, and the calculation amount and the video memory consumption are reduced. In order to solve the problem that the resolution of a depth map is lower than that of an input image due to the fact that an MVSNet network uses a low-scale feature map, a feature pyramid module is used for extracting a multi-scale feature map, and staged and multi-scale iterative optimization depth estimation is designed. On the premise of ensuring the precision, the average number</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230103&amp;DB=EPODOC&amp;CC=CN&amp;NR=115564888A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230103&amp;DB=EPODOC&amp;CC=CN&amp;NR=115564888A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SONG YIYUN</creatorcontrib><creatorcontrib>LENG GENG</creatorcontrib><creatorcontrib>LUO XIN</creatorcontrib><creatorcontrib>WEI ZUQI</creatorcontrib><creatorcontrib>FENG QIAN</creatorcontrib><creatorcontrib>XU WENBO</creatorcontrib><creatorcontrib>WU YUXUAN</creatorcontrib><title>Visible light multi-view image three-dimensional reconstruction method based on deep learning</title><description>The invention provides a visible light multi-view image three-dimensional reconstruction method based on deep learning based on improvement of an MVSNet network. A batch normalization layer and a nonlinear activation function layer in the network are replaced by a fused Inplace-ABN layer, so that the occupation amount of a video memory is reduced. And a weighted mean measurement method based on grouping similarity is designed to reduce the feature dimension of the cost body, so that a more lightweight cost body is obtained, network parameters are compressed, and the calculation amount and the video memory consumption are reduced. In order to solve the problem that the resolution of a depth map is lower than that of an input image due to the fact that an MVSNet network uses a low-scale feature map, a feature pyramid module is used for extracting a multi-scale feature map, and staged and multi-scale iterative optimization depth estimation is designed. On the premise of ensuring the precision, the average number</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNij0KwkAUBrexEPUOzwOkCBpJG4JiZSV2Eja7n8mD_Qm7L3p9U3gAq2GGWavngzP3DuR4GIX87ISLN-ND7PUAkjEBhWWPkDkG7SjBxJAlzUaWQB4yRku9zrC0uAUmctApcBi2avXSLmP340btL-d7ey0wxQ550gYB0rW3sqyq07Gu6-bwz_MFOW88wQ</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>SONG YIYUN</creator><creator>LENG GENG</creator><creator>LUO XIN</creator><creator>WEI ZUQI</creator><creator>FENG QIAN</creator><creator>XU WENBO</creator><creator>WU YUXUAN</creator><scope>EVB</scope></search><sort><creationdate>20230103</creationdate><title>Visible light multi-view image three-dimensional reconstruction method based on deep learning</title><author>SONG YIYUN ; LENG GENG ; LUO XIN ; WEI ZUQI ; FENG QIAN ; XU WENBO ; WU YUXUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115564888A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SONG YIYUN</creatorcontrib><creatorcontrib>LENG GENG</creatorcontrib><creatorcontrib>LUO XIN</creatorcontrib><creatorcontrib>WEI ZUQI</creatorcontrib><creatorcontrib>FENG QIAN</creatorcontrib><creatorcontrib>XU WENBO</creatorcontrib><creatorcontrib>WU YUXUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SONG YIYUN</au><au>LENG GENG</au><au>LUO XIN</au><au>WEI ZUQI</au><au>FENG QIAN</au><au>XU WENBO</au><au>WU YUXUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Visible light multi-view image three-dimensional reconstruction method based on deep learning</title><date>2023-01-03</date><risdate>2023</risdate><abstract>The invention provides a visible light multi-view image three-dimensional reconstruction method based on deep learning based on improvement of an MVSNet network. A batch normalization layer and a nonlinear activation function layer in the network are replaced by a fused Inplace-ABN layer, so that the occupation amount of a video memory is reduced. And a weighted mean measurement method based on grouping similarity is designed to reduce the feature dimension of the cost body, so that a more lightweight cost body is obtained, network parameters are compressed, and the calculation amount and the video memory consumption are reduced. In order to solve the problem that the resolution of a depth map is lower than that of an input image due to the fact that an MVSNet network uses a low-scale feature map, a feature pyramid module is used for extracting a multi-scale feature map, and staged and multi-scale iterative optimization depth estimation is designed. On the premise of ensuring the precision, the average number</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115564888A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Visible light multi-view image three-dimensional reconstruction method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SONG%20YIYUN&rft.date=2023-01-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115564888A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true