Airspace carbon emission short-term prediction method and system based on graph neural network

The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WAN JUNQIANG, YANG LEI, NING CHANGYUAN, GENG SUNYUE, DU JINGHAN, ZHANG HONGHAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WAN JUNQIANG
YANG LEI
NING CHANGYUAN
GENG SUNYUE
DU JINGHAN
ZHANG HONGHAI
description The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting the spatial features of airspace carbon emission data; and then the airspace carbon emission data with the spatial feature information is transmitted to a long short-term memory (LSTM) network, the time change trend of the airspace carbon emission data is learned, the time features of the airspace carbon emission data are extracted, and finally a final prediction result is output through a full connection layer. According to the method, the time dependence and the space dependence of the airspace carbon emission data can be captured at the same time, the capability of describing the spatial-temporal characteristics of the airspace carbon emission data is achieved, and the airspace carbon emission rule of a large-ra
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115564114A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115564114A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115564114A3</originalsourceid><addsrcrecordid>eNqNjTsOwjAQRN1QIOAOywFSWCT0UQSioqIm2tgLsRJ_tGuEuD0GcQCqN5p50izVtXUsCQ2BQR5iAPJOxJUgY-RcZWIPick6kz-tpzxGCxgsyEsyeRhQyEKZ7oxphEAPxrkgPyNPa7W44Sy0-XGltsfDpTtVlGJP3-Ni9t1Z66bZ11rX7e4f5w1qAzzf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Airspace carbon emission short-term prediction method and system based on graph neural network</title><source>esp@cenet</source><creator>WAN JUNQIANG ; YANG LEI ; NING CHANGYUAN ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI</creator><creatorcontrib>WAN JUNQIANG ; YANG LEI ; NING CHANGYUAN ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI</creatorcontrib><description>The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting the spatial features of airspace carbon emission data; and then the airspace carbon emission data with the spatial feature information is transmitted to a long short-term memory (LSTM) network, the time change trend of the airspace carbon emission data is learned, the time features of the airspace carbon emission data are extracted, and finally a final prediction result is output through a full connection layer. According to the method, the time dependence and the space dependence of the airspace carbon emission data can be captured at the same time, the capability of describing the spatial-temporal characteristics of the airspace carbon emission data is achieved, and the airspace carbon emission rule of a large-ra</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230103&amp;DB=EPODOC&amp;CC=CN&amp;NR=115564114A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230103&amp;DB=EPODOC&amp;CC=CN&amp;NR=115564114A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WAN JUNQIANG</creatorcontrib><creatorcontrib>YANG LEI</creatorcontrib><creatorcontrib>NING CHANGYUAN</creatorcontrib><creatorcontrib>GENG SUNYUE</creatorcontrib><creatorcontrib>DU JINGHAN</creatorcontrib><creatorcontrib>ZHANG HONGHAI</creatorcontrib><title>Airspace carbon emission short-term prediction method and system based on graph neural network</title><description>The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting the spatial features of airspace carbon emission data; and then the airspace carbon emission data with the spatial feature information is transmitted to a long short-term memory (LSTM) network, the time change trend of the airspace carbon emission data is learned, the time features of the airspace carbon emission data are extracted, and finally a final prediction result is output through a full connection layer. According to the method, the time dependence and the space dependence of the airspace carbon emission data can be captured at the same time, the capability of describing the spatial-temporal characteristics of the airspace carbon emission data is achieved, and the airspace carbon emission rule of a large-ra</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsOwjAQRN1QIOAOywFSWCT0UQSioqIm2tgLsRJ_tGuEuD0GcQCqN5p50izVtXUsCQ2BQR5iAPJOxJUgY-RcZWIPick6kz-tpzxGCxgsyEsyeRhQyEKZ7oxphEAPxrkgPyNPa7W44Sy0-XGltsfDpTtVlGJP3-Ni9t1Z66bZ11rX7e4f5w1qAzzf</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>WAN JUNQIANG</creator><creator>YANG LEI</creator><creator>NING CHANGYUAN</creator><creator>GENG SUNYUE</creator><creator>DU JINGHAN</creator><creator>ZHANG HONGHAI</creator><scope>EVB</scope></search><sort><creationdate>20230103</creationdate><title>Airspace carbon emission short-term prediction method and system based on graph neural network</title><author>WAN JUNQIANG ; YANG LEI ; NING CHANGYUAN ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115564114A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WAN JUNQIANG</creatorcontrib><creatorcontrib>YANG LEI</creatorcontrib><creatorcontrib>NING CHANGYUAN</creatorcontrib><creatorcontrib>GENG SUNYUE</creatorcontrib><creatorcontrib>DU JINGHAN</creatorcontrib><creatorcontrib>ZHANG HONGHAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WAN JUNQIANG</au><au>YANG LEI</au><au>NING CHANGYUAN</au><au>GENG SUNYUE</au><au>DU JINGHAN</au><au>ZHANG HONGHAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Airspace carbon emission short-term prediction method and system based on graph neural network</title><date>2023-01-03</date><risdate>2023</risdate><abstract>The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting the spatial features of airspace carbon emission data; and then the airspace carbon emission data with the spatial feature information is transmitted to a long short-term memory (LSTM) network, the time change trend of the airspace carbon emission data is learned, the time features of the airspace carbon emission data are extracted, and finally a final prediction result is output through a full connection layer. According to the method, the time dependence and the space dependence of the airspace carbon emission data can be captured at the same time, the capability of describing the spatial-temporal characteristics of the airspace carbon emission data is achieved, and the airspace carbon emission rule of a large-ra</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115564114A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Airspace carbon emission short-term prediction method and system based on graph neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WAN%20JUNQIANG&rft.date=2023-01-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115564114A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true