Airspace carbon emission short-term prediction method and system based on graph neural network
The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WAN JUNQIANG YANG LEI NING CHANGYUAN GENG SUNYUE DU JINGHAN ZHANG HONGHAI |
description | The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting the spatial features of airspace carbon emission data; and then the airspace carbon emission data with the spatial feature information is transmitted to a long short-term memory (LSTM) network, the time change trend of the airspace carbon emission data is learned, the time features of the airspace carbon emission data are extracted, and finally a final prediction result is output through a full connection layer. According to the method, the time dependence and the space dependence of the airspace carbon emission data can be captured at the same time, the capability of describing the spatial-temporal characteristics of the airspace carbon emission data is achieved, and the airspace carbon emission rule of a large-ra |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115564114A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115564114A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115564114A3</originalsourceid><addsrcrecordid>eNqNjTsOwjAQRN1QIOAOywFSWCT0UQSioqIm2tgLsRJ_tGuEuD0GcQCqN5p50izVtXUsCQ2BQR5iAPJOxJUgY-RcZWIPick6kz-tpzxGCxgsyEsyeRhQyEKZ7oxphEAPxrkgPyNPa7W44Sy0-XGltsfDpTtVlGJP3-Ni9t1Z66bZ11rX7e4f5w1qAzzf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Airspace carbon emission short-term prediction method and system based on graph neural network</title><source>esp@cenet</source><creator>WAN JUNQIANG ; YANG LEI ; NING CHANGYUAN ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI</creator><creatorcontrib>WAN JUNQIANG ; YANG LEI ; NING CHANGYUAN ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI</creatorcontrib><description>The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting the spatial features of airspace carbon emission data; and then the airspace carbon emission data with the spatial feature information is transmitted to a long short-term memory (LSTM) network, the time change trend of the airspace carbon emission data is learned, the time features of the airspace carbon emission data are extracted, and finally a final prediction result is output through a full connection layer. According to the method, the time dependence and the space dependence of the airspace carbon emission data can be captured at the same time, the capability of describing the spatial-temporal characteristics of the airspace carbon emission data is achieved, and the airspace carbon emission rule of a large-ra</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230103&DB=EPODOC&CC=CN&NR=115564114A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230103&DB=EPODOC&CC=CN&NR=115564114A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WAN JUNQIANG</creatorcontrib><creatorcontrib>YANG LEI</creatorcontrib><creatorcontrib>NING CHANGYUAN</creatorcontrib><creatorcontrib>GENG SUNYUE</creatorcontrib><creatorcontrib>DU JINGHAN</creatorcontrib><creatorcontrib>ZHANG HONGHAI</creatorcontrib><title>Airspace carbon emission short-term prediction method and system based on graph neural network</title><description>The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting the spatial features of airspace carbon emission data; and then the airspace carbon emission data with the spatial feature information is transmitted to a long short-term memory (LSTM) network, the time change trend of the airspace carbon emission data is learned, the time features of the airspace carbon emission data are extracted, and finally a final prediction result is output through a full connection layer. According to the method, the time dependence and the space dependence of the airspace carbon emission data can be captured at the same time, the capability of describing the spatial-temporal characteristics of the airspace carbon emission data is achieved, and the airspace carbon emission rule of a large-ra</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsOwjAQRN1QIOAOywFSWCT0UQSioqIm2tgLsRJ_tGuEuD0GcQCqN5p50izVtXUsCQ2BQR5iAPJOxJUgY-RcZWIPick6kz-tpzxGCxgsyEsyeRhQyEKZ7oxphEAPxrkgPyNPa7W44Sy0-XGltsfDpTtVlGJP3-Ni9t1Z66bZ11rX7e4f5w1qAzzf</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>WAN JUNQIANG</creator><creator>YANG LEI</creator><creator>NING CHANGYUAN</creator><creator>GENG SUNYUE</creator><creator>DU JINGHAN</creator><creator>ZHANG HONGHAI</creator><scope>EVB</scope></search><sort><creationdate>20230103</creationdate><title>Airspace carbon emission short-term prediction method and system based on graph neural network</title><author>WAN JUNQIANG ; YANG LEI ; NING CHANGYUAN ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115564114A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WAN JUNQIANG</creatorcontrib><creatorcontrib>YANG LEI</creatorcontrib><creatorcontrib>NING CHANGYUAN</creatorcontrib><creatorcontrib>GENG SUNYUE</creatorcontrib><creatorcontrib>DU JINGHAN</creatorcontrib><creatorcontrib>ZHANG HONGHAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WAN JUNQIANG</au><au>YANG LEI</au><au>NING CHANGYUAN</au><au>GENG SUNYUE</au><au>DU JINGHAN</au><au>ZHANG HONGHAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Airspace carbon emission short-term prediction method and system based on graph neural network</title><date>2023-01-03</date><risdate>2023</risdate><abstract>The invention discloses an airspace carbon emission short-term prediction method and system based on a graph neural network, and the method comprises the steps: firstly, learning a topological structure of an airspace sector through employing a graph convolutional neural network GCN, and extracting the spatial features of airspace carbon emission data; and then the airspace carbon emission data with the spatial feature information is transmitted to a long short-term memory (LSTM) network, the time change trend of the airspace carbon emission data is learned, the time features of the airspace carbon emission data are extracted, and finally a final prediction result is output through a full connection layer. According to the method, the time dependence and the space dependence of the airspace carbon emission data can be captured at the same time, the capability of describing the spatial-temporal characteristics of the airspace carbon emission data is achieved, and the airspace carbon emission rule of a large-ra</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115564114A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Airspace carbon emission short-term prediction method and system based on graph neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WAN%20JUNQIANG&rft.date=2023-01-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115564114A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |