Training and/or utilizing machine learning models for use in natural language-based robot control
Techniques are disclosed that enable training of a target condition policy based on multiple data sets, where each data set describes a robotic task in a different manner. For example, the plurality of data sets can include: a target image data set in which a task is captured in a target image; a na...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SEMANET PIERRE LYNCH CORY |
description | Techniques are disclosed that enable training of a target condition policy based on multiple data sets, where each data set describes a robotic task in a different manner. For example, the plurality of data sets can include: a target image data set in which a task is captured in a target image; a natural language instruction dataset in which the task is described in a natural language instruction; and a task ID data set, wherein the task is described by a task ID. In various embodiments, each of the plurality of data sets has a corresponding encoder, where the encoders are trained to generate a shared potential spatial representation of a corresponding task description. Additional or alternative techniques are disclosed that enable the use of a target conditional policy network to control a robot. For example, the robot can be controlled using the target conditional policy network based on free-form natural language input describing robot task (s).
公开了能够基于多个数据集来训练目标条件策略的技术,其中,每个数据集以不同方式描述机器人任务。例如,所述多个数据集能够包括: |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115551681A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115551681A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115551681A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQQNE0FqLeYTxAkEVWbENQrKzSh0l2EhcmM2F203h6iXgAqw-fty2wMYwSZQSUcFKDJUeO73VM2L-iEDChfcWkgTjBsKpEEAUE82LIwCjjgiOVHSYKYNpphl4lm_K-2AzIiQ6_7orj_dbUj5JmbSnN2JNQbuunc957d7m66vyP-QAUdT3K</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training and/or utilizing machine learning models for use in natural language-based robot control</title><source>esp@cenet</source><creator>SEMANET PIERRE ; LYNCH CORY</creator><creatorcontrib>SEMANET PIERRE ; LYNCH CORY</creatorcontrib><description>Techniques are disclosed that enable training of a target condition policy based on multiple data sets, where each data set describes a robotic task in a different manner. For example, the plurality of data sets can include: a target image data set in which a task is captured in a target image; a natural language instruction dataset in which the task is described in a natural language instruction; and a task ID data set, wherein the task is described by a task ID. In various embodiments, each of the plurality of data sets has a corresponding encoder, where the encoders are trained to generate a shared potential spatial representation of a corresponding task description. Additional or alternative techniques are disclosed that enable the use of a target conditional policy network to control a robot. For example, the robot can be controlled using the target conditional policy network based on free-form natural language input describing robot task (s).
公开了能够基于多个数据集来训练目标条件策略的技术,其中,每个数据集以不同方式描述机器人任务。例如,所述多个数据集能够包括:</description><language>chi ; eng</language><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES ; HAND TOOLS ; MANIPULATORS ; PERFORMING OPERATIONS ; PORTABLE POWER-DRIVEN TOOLS ; TRANSPORTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115551681A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115551681A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SEMANET PIERRE</creatorcontrib><creatorcontrib>LYNCH CORY</creatorcontrib><title>Training and/or utilizing machine learning models for use in natural language-based robot control</title><description>Techniques are disclosed that enable training of a target condition policy based on multiple data sets, where each data set describes a robotic task in a different manner. For example, the plurality of data sets can include: a target image data set in which a task is captured in a target image; a natural language instruction dataset in which the task is described in a natural language instruction; and a task ID data set, wherein the task is described by a task ID. In various embodiments, each of the plurality of data sets has a corresponding encoder, where the encoders are trained to generate a shared potential spatial representation of a corresponding task description. Additional or alternative techniques are disclosed that enable the use of a target conditional policy network to control a robot. For example, the robot can be controlled using the target conditional policy network based on free-form natural language input describing robot task (s).
公开了能够基于多个数据集来训练目标条件策略的技术,其中,每个数据集以不同方式描述机器人任务。例如,所述多个数据集能够包括:</description><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</subject><subject>HAND TOOLS</subject><subject>MANIPULATORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PORTABLE POWER-DRIVEN TOOLS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQQNE0FqLeYTxAkEVWbENQrKzSh0l2EhcmM2F203h6iXgAqw-fty2wMYwSZQSUcFKDJUeO73VM2L-iEDChfcWkgTjBsKpEEAUE82LIwCjjgiOVHSYKYNpphl4lm_K-2AzIiQ6_7orj_dbUj5JmbSnN2JNQbuunc957d7m66vyP-QAUdT3K</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>SEMANET PIERRE</creator><creator>LYNCH CORY</creator><scope>EVB</scope></search><sort><creationdate>20221230</creationdate><title>Training and/or utilizing machine learning models for use in natural language-based robot control</title><author>SEMANET PIERRE ; LYNCH CORY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115551681A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</topic><topic>HAND TOOLS</topic><topic>MANIPULATORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PORTABLE POWER-DRIVEN TOOLS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>SEMANET PIERRE</creatorcontrib><creatorcontrib>LYNCH CORY</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SEMANET PIERRE</au><au>LYNCH CORY</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training and/or utilizing machine learning models for use in natural language-based robot control</title><date>2022-12-30</date><risdate>2022</risdate><abstract>Techniques are disclosed that enable training of a target condition policy based on multiple data sets, where each data set describes a robotic task in a different manner. For example, the plurality of data sets can include: a target image data set in which a task is captured in a target image; a natural language instruction dataset in which the task is described in a natural language instruction; and a task ID data set, wherein the task is described by a task ID. In various embodiments, each of the plurality of data sets has a corresponding encoder, where the encoders are trained to generate a shared potential spatial representation of a corresponding task description. Additional or alternative techniques are disclosed that enable the use of a target conditional policy network to control a robot. For example, the robot can be controlled using the target conditional policy network based on free-form natural language input describing robot task (s).
公开了能够基于多个数据集来训练目标条件策略的技术,其中,每个数据集以不同方式描述机器人任务。例如,所述多个数据集能够包括:</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115551681A |
source | esp@cenet |
subjects | CHAMBERS PROVIDED WITH MANIPULATION DEVICES HAND TOOLS MANIPULATORS PERFORMING OPERATIONS PORTABLE POWER-DRIVEN TOOLS TRANSPORTING |
title | Training and/or utilizing machine learning models for use in natural language-based robot control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SEMANET%20PIERRE&rft.date=2022-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115551681A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |