Deep learning road extraction result optimization method based on topological connectivity

The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHEN ZIMO, TANIGOSHI, DAYLASER
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHEN ZIMO
TANIGOSHI
DAYLASER
description The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extraction result; finding the position of the fracture section by using line segment phase calculation and line segment phase constraint; detecting three attributes of a road direction, a road width and a breakpoint position to which the fracture section belongs; and determining a matching relation of different fracture sections according to fracture section attributes, and connecting and optimizing the fracture sections. According to the three steps of fracture section searching, fracture section attribute determination and fracture section matching connection, the three problems that fracture sections are irregular, fracture section attribute information is difficult to extract, and fracture section matching is ambiguo
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115546167A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115546167A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115546167A3</originalsourceid><addsrcrecordid>eNqNizEOwjAQBNNQIOAPxwMoLEioUQBRUVHRRIezBEuOz7IPBLyeCPEAqtWMZsfFeQtE8uAUXOgoCbeEpya26iRQQr57JYnqevfmr-uhN2npwhktDawSxUvnLHuyEgKG68Ppa1qMruwzZr-dFPP97lQfFojSIEe2CNCmPhpTlqvKVOvN8p_mA5-wPB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning road extraction result optimization method based on topological connectivity</title><source>esp@cenet</source><creator>SHEN ZIMO ; TANIGOSHI ; DAYLASER</creator><creatorcontrib>SHEN ZIMO ; TANIGOSHI ; DAYLASER</creatorcontrib><description>The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extraction result; finding the position of the fracture section by using line segment phase calculation and line segment phase constraint; detecting three attributes of a road direction, a road width and a breakpoint position to which the fracture section belongs; and determining a matching relation of different fracture sections according to fracture section attributes, and connecting and optimizing the fracture sections. According to the three steps of fracture section searching, fracture section attribute determination and fracture section matching connection, the three problems that fracture sections are irregular, fracture section attribute information is difficult to extract, and fracture section matching is ambiguo</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221230&amp;DB=EPODOC&amp;CC=CN&amp;NR=115546167A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221230&amp;DB=EPODOC&amp;CC=CN&amp;NR=115546167A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHEN ZIMO</creatorcontrib><creatorcontrib>TANIGOSHI</creatorcontrib><creatorcontrib>DAYLASER</creatorcontrib><title>Deep learning road extraction result optimization method based on topological connectivity</title><description>The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extraction result; finding the position of the fracture section by using line segment phase calculation and line segment phase constraint; detecting three attributes of a road direction, a road width and a breakpoint position to which the fracture section belongs; and determining a matching relation of different fracture sections according to fracture section attributes, and connecting and optimizing the fracture sections. According to the three steps of fracture section searching, fracture section attribute determination and fracture section matching connection, the three problems that fracture sections are irregular, fracture section attribute information is difficult to extract, and fracture section matching is ambiguo</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAQBNNQIOAPxwMoLEioUQBRUVHRRIezBEuOz7IPBLyeCPEAqtWMZsfFeQtE8uAUXOgoCbeEpya26iRQQr57JYnqevfmr-uhN2npwhktDawSxUvnLHuyEgKG68Ppa1qMruwzZr-dFPP97lQfFojSIEe2CNCmPhpTlqvKVOvN8p_mA5-wPB0</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>SHEN ZIMO</creator><creator>TANIGOSHI</creator><creator>DAYLASER</creator><scope>EVB</scope></search><sort><creationdate>20221230</creationdate><title>Deep learning road extraction result optimization method based on topological connectivity</title><author>SHEN ZIMO ; TANIGOSHI ; DAYLASER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115546167A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHEN ZIMO</creatorcontrib><creatorcontrib>TANIGOSHI</creatorcontrib><creatorcontrib>DAYLASER</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHEN ZIMO</au><au>TANIGOSHI</au><au>DAYLASER</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning road extraction result optimization method based on topological connectivity</title><date>2022-12-30</date><risdate>2022</risdate><abstract>The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extraction result; finding the position of the fracture section by using line segment phase calculation and line segment phase constraint; detecting three attributes of a road direction, a road width and a breakpoint position to which the fracture section belongs; and determining a matching relation of different fracture sections according to fracture section attributes, and connecting and optimizing the fracture sections. According to the three steps of fracture section searching, fracture section attribute determination and fracture section matching connection, the three problems that fracture sections are irregular, fracture section attribute information is difficult to extract, and fracture section matching is ambiguo</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115546167A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Deep learning road extraction result optimization method based on topological connectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHEN%20ZIMO&rft.date=2022-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115546167A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true