Deep learning road extraction result optimization method based on topological connectivity
The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extract...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHEN ZIMO TANIGOSHI DAYLASER |
description | The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extraction result; finding the position of the fracture section by using line segment phase calculation and line segment phase constraint; detecting three attributes of a road direction, a road width and a breakpoint position to which the fracture section belongs; and determining a matching relation of different fracture sections according to fracture section attributes, and connecting and optimizing the fracture sections. According to the three steps of fracture section searching, fracture section attribute determination and fracture section matching connection, the three problems that fracture sections are irregular, fracture section attribute information is difficult to extract, and fracture section matching is ambiguo |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115546167A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115546167A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115546167A3</originalsourceid><addsrcrecordid>eNqNizEOwjAQBNNQIOAPxwMoLEioUQBRUVHRRIezBEuOz7IPBLyeCPEAqtWMZsfFeQtE8uAUXOgoCbeEpya26iRQQr57JYnqevfmr-uhN2npwhktDawSxUvnLHuyEgKG68Ppa1qMruwzZr-dFPP97lQfFojSIEe2CNCmPhpTlqvKVOvN8p_mA5-wPB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning road extraction result optimization method based on topological connectivity</title><source>esp@cenet</source><creator>SHEN ZIMO ; TANIGOSHI ; DAYLASER</creator><creatorcontrib>SHEN ZIMO ; TANIGOSHI ; DAYLASER</creatorcontrib><description>The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extraction result; finding the position of the fracture section by using line segment phase calculation and line segment phase constraint; detecting three attributes of a road direction, a road width and a breakpoint position to which the fracture section belongs; and determining a matching relation of different fracture sections according to fracture section attributes, and connecting and optimizing the fracture sections. According to the three steps of fracture section searching, fracture section attribute determination and fracture section matching connection, the three problems that fracture sections are irregular, fracture section attribute information is difficult to extract, and fracture section matching is ambiguo</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115546167A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115546167A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHEN ZIMO</creatorcontrib><creatorcontrib>TANIGOSHI</creatorcontrib><creatorcontrib>DAYLASER</creatorcontrib><title>Deep learning road extraction result optimization method based on topological connectivity</title><description>The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extraction result; finding the position of the fracture section by using line segment phase calculation and line segment phase constraint; detecting three attributes of a road direction, a road width and a breakpoint position to which the fracture section belongs; and determining a matching relation of different fracture sections according to fracture section attributes, and connecting and optimizing the fracture sections. According to the three steps of fracture section searching, fracture section attribute determination and fracture section matching connection, the three problems that fracture sections are irregular, fracture section attribute information is difficult to extract, and fracture section matching is ambiguo</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAQBNNQIOAPxwMoLEioUQBRUVHRRIezBEuOz7IPBLyeCPEAqtWMZsfFeQtE8uAUXOgoCbeEpya26iRQQr57JYnqevfmr-uhN2npwhktDawSxUvnLHuyEgKG68Ppa1qMruwzZr-dFPP97lQfFojSIEe2CNCmPhpTlqvKVOvN8p_mA5-wPB0</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>SHEN ZIMO</creator><creator>TANIGOSHI</creator><creator>DAYLASER</creator><scope>EVB</scope></search><sort><creationdate>20221230</creationdate><title>Deep learning road extraction result optimization method based on topological connectivity</title><author>SHEN ZIMO ; TANIGOSHI ; DAYLASER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115546167A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHEN ZIMO</creatorcontrib><creatorcontrib>TANIGOSHI</creatorcontrib><creatorcontrib>DAYLASER</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHEN ZIMO</au><au>TANIGOSHI</au><au>DAYLASER</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning road extraction result optimization method based on topological connectivity</title><date>2022-12-30</date><risdate>2022</risdate><abstract>The invention discloses a deep learning road extraction result optimization method based on topological connectivity. The method comprises the following steps: inputting deep learning road extraction result image data; orderly arranging edge extraction line segments of the deep learning road extraction result; finding the position of the fracture section by using line segment phase calculation and line segment phase constraint; detecting three attributes of a road direction, a road width and a breakpoint position to which the fracture section belongs; and determining a matching relation of different fracture sections according to fracture section attributes, and connecting and optimizing the fracture sections. According to the three steps of fracture section searching, fracture section attribute determination and fracture section matching connection, the three problems that fracture sections are irregular, fracture section attribute information is difficult to extract, and fracture section matching is ambiguo</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115546167A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Deep learning road extraction result optimization method based on topological connectivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHEN%20ZIMO&rft.date=2022-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115546167A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |