Bearing fault diagnosis method based on bearing fault knowledge graph

The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU NINGYUN, CHEN TIANCHANG, ZHAN LIWEI, JIANG BIN, LEI XUE, MA LEIMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU NINGYUN
CHEN TIANCHANG
ZHAN LIWEI
JIANG BIN
LEI XUE
MA LEIMING
description The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to the sample text content based on a deep learning model of fusion adversarial training; a confrontation training and text classification model fusion mode is adopted to adapt to text data with different sources and different qualities and realize automatic classification, and then a fault description text of a fault bearing is input into a text classification model after data preprocessing to obtain a corresponding text label; the text label is used for representing an attribute type of a fault phenomenon described by the fault description text, and then filling the fault description text into an FMECA table according to the text label of the fault description text to construct a bearing fault knowledge graph which
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115544265A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115544265A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115544265A3</originalsourceid><addsrcrecordid>eNrjZHB1Sk0sysxLV0hLLM0pUUjJTEzPyy_OLFbITS3JyE9RSEosTk1RyM9TSEJRl52XX56TmpKeqpBelFiQwcPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNT81JL4p39DA1NTU1MjMxMHY2JUQMA2vozBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Bearing fault diagnosis method based on bearing fault knowledge graph</title><source>esp@cenet</source><creator>LU NINGYUN ; CHEN TIANCHANG ; ZHAN LIWEI ; JIANG BIN ; LEI XUE ; MA LEIMING</creator><creatorcontrib>LU NINGYUN ; CHEN TIANCHANG ; ZHAN LIWEI ; JIANG BIN ; LEI XUE ; MA LEIMING</creatorcontrib><description>The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to the sample text content based on a deep learning model of fusion adversarial training; a confrontation training and text classification model fusion mode is adopted to adapt to text data with different sources and different qualities and realize automatic classification, and then a fault description text of a fault bearing is input into a text classification model after data preprocessing to obtain a corresponding text label; the text label is used for representing an attribute type of a fault phenomenon described by the fault description text, and then filling the fault description text into an FMECA table according to the text label of the fault description text to construct a bearing fault knowledge graph which</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221230&amp;DB=EPODOC&amp;CC=CN&amp;NR=115544265A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221230&amp;DB=EPODOC&amp;CC=CN&amp;NR=115544265A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU NINGYUN</creatorcontrib><creatorcontrib>CHEN TIANCHANG</creatorcontrib><creatorcontrib>ZHAN LIWEI</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>LEI XUE</creatorcontrib><creatorcontrib>MA LEIMING</creatorcontrib><title>Bearing fault diagnosis method based on bearing fault knowledge graph</title><description>The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to the sample text content based on a deep learning model of fusion adversarial training; a confrontation training and text classification model fusion mode is adopted to adapt to text data with different sources and different qualities and realize automatic classification, and then a fault description text of a fault bearing is input into a text classification model after data preprocessing to obtain a corresponding text label; the text label is used for representing an attribute type of a fault phenomenon described by the fault description text, and then filling the fault description text into an FMECA table according to the text label of the fault description text to construct a bearing fault knowledge graph which</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB1Sk0sysxLV0hLLM0pUUjJTEzPyy_OLFbITS3JyE9RSEosTk1RyM9TSEJRl52XX56TmpKeqpBelFiQwcPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNT81JL4p39DA1NTU1MjMxMHY2JUQMA2vozBg</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>LU NINGYUN</creator><creator>CHEN TIANCHANG</creator><creator>ZHAN LIWEI</creator><creator>JIANG BIN</creator><creator>LEI XUE</creator><creator>MA LEIMING</creator><scope>EVB</scope></search><sort><creationdate>20221230</creationdate><title>Bearing fault diagnosis method based on bearing fault knowledge graph</title><author>LU NINGYUN ; CHEN TIANCHANG ; ZHAN LIWEI ; JIANG BIN ; LEI XUE ; MA LEIMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115544265A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU NINGYUN</creatorcontrib><creatorcontrib>CHEN TIANCHANG</creatorcontrib><creatorcontrib>ZHAN LIWEI</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>LEI XUE</creatorcontrib><creatorcontrib>MA LEIMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU NINGYUN</au><au>CHEN TIANCHANG</au><au>ZHAN LIWEI</au><au>JIANG BIN</au><au>LEI XUE</au><au>MA LEIMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Bearing fault diagnosis method based on bearing fault knowledge graph</title><date>2022-12-30</date><risdate>2022</risdate><abstract>The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to the sample text content based on a deep learning model of fusion adversarial training; a confrontation training and text classification model fusion mode is adopted to adapt to text data with different sources and different qualities and realize automatic classification, and then a fault description text of a fault bearing is input into a text classification model after data preprocessing to obtain a corresponding text label; the text label is used for representing an attribute type of a fault phenomenon described by the fault description text, and then filling the fault description text into an FMECA table according to the text label of the fault description text to construct a bearing fault knowledge graph which</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115544265A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Bearing fault diagnosis method based on bearing fault knowledge graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20NINGYUN&rft.date=2022-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115544265A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true