Bearing fault diagnosis method based on bearing fault knowledge graph
The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LU NINGYUN CHEN TIANCHANG ZHAN LIWEI JIANG BIN LEI XUE MA LEIMING |
description | The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to the sample text content based on a deep learning model of fusion adversarial training; a confrontation training and text classification model fusion mode is adopted to adapt to text data with different sources and different qualities and realize automatic classification, and then a fault description text of a fault bearing is input into a text classification model after data preprocessing to obtain a corresponding text label; the text label is used for representing an attribute type of a fault phenomenon described by the fault description text, and then filling the fault description text into an FMECA table according to the text label of the fault description text to construct a bearing fault knowledge graph which |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115544265A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115544265A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115544265A3</originalsourceid><addsrcrecordid>eNrjZHB1Sk0sysxLV0hLLM0pUUjJTEzPyy_OLFbITS3JyE9RSEosTk1RyM9TSEJRl52XX56TmpKeqpBelFiQwcPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNT81JL4p39DA1NTU1MjMxMHY2JUQMA2vozBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Bearing fault diagnosis method based on bearing fault knowledge graph</title><source>esp@cenet</source><creator>LU NINGYUN ; CHEN TIANCHANG ; ZHAN LIWEI ; JIANG BIN ; LEI XUE ; MA LEIMING</creator><creatorcontrib>LU NINGYUN ; CHEN TIANCHANG ; ZHAN LIWEI ; JIANG BIN ; LEI XUE ; MA LEIMING</creatorcontrib><description>The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to the sample text content based on a deep learning model of fusion adversarial training; a confrontation training and text classification model fusion mode is adopted to adapt to text data with different sources and different qualities and realize automatic classification, and then a fault description text of a fault bearing is input into a text classification model after data preprocessing to obtain a corresponding text label; the text label is used for representing an attribute type of a fault phenomenon described by the fault description text, and then filling the fault description text into an FMECA table according to the text label of the fault description text to construct a bearing fault knowledge graph which</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115544265A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115544265A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU NINGYUN</creatorcontrib><creatorcontrib>CHEN TIANCHANG</creatorcontrib><creatorcontrib>ZHAN LIWEI</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>LEI XUE</creatorcontrib><creatorcontrib>MA LEIMING</creatorcontrib><title>Bearing fault diagnosis method based on bearing fault knowledge graph</title><description>The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to the sample text content based on a deep learning model of fusion adversarial training; a confrontation training and text classification model fusion mode is adopted to adapt to text data with different sources and different qualities and realize automatic classification, and then a fault description text of a fault bearing is input into a text classification model after data preprocessing to obtain a corresponding text label; the text label is used for representing an attribute type of a fault phenomenon described by the fault description text, and then filling the fault description text into an FMECA table according to the text label of the fault description text to construct a bearing fault knowledge graph which</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB1Sk0sysxLV0hLLM0pUUjJTEzPyy_OLFbITS3JyE9RSEosTk1RyM9TSEJRl52XX56TmpKeqpBelFiQwcPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNT81JL4p39DA1NTU1MjMxMHY2JUQMA2vozBg</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>LU NINGYUN</creator><creator>CHEN TIANCHANG</creator><creator>ZHAN LIWEI</creator><creator>JIANG BIN</creator><creator>LEI XUE</creator><creator>MA LEIMING</creator><scope>EVB</scope></search><sort><creationdate>20221230</creationdate><title>Bearing fault diagnosis method based on bearing fault knowledge graph</title><author>LU NINGYUN ; CHEN TIANCHANG ; ZHAN LIWEI ; JIANG BIN ; LEI XUE ; MA LEIMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115544265A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU NINGYUN</creatorcontrib><creatorcontrib>CHEN TIANCHANG</creatorcontrib><creatorcontrib>ZHAN LIWEI</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>LEI XUE</creatorcontrib><creatorcontrib>MA LEIMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU NINGYUN</au><au>CHEN TIANCHANG</au><au>ZHAN LIWEI</au><au>JIANG BIN</au><au>LEI XUE</au><au>MA LEIMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Bearing fault diagnosis method based on bearing fault knowledge graph</title><date>2022-12-30</date><risdate>2022</risdate><abstract>The invention discloses a bearing fault diagnosis method based on a bearing fault knowledge graph, and relates to the technical field of aviation, and the method comprises the steps: obtaining a text classification model through the training of a sample text content and a text label corresponding to the sample text content based on a deep learning model of fusion adversarial training; a confrontation training and text classification model fusion mode is adopted to adapt to text data with different sources and different qualities and realize automatic classification, and then a fault description text of a fault bearing is input into a text classification model after data preprocessing to obtain a corresponding text label; the text label is used for representing an attribute type of a fault phenomenon described by the fault description text, and then filling the fault description text into an FMECA table according to the text label of the fault description text to construct a bearing fault knowledge graph which</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115544265A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Bearing fault diagnosis method based on bearing fault knowledge graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20NINGYUN&rft.date=2022-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115544265A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |