Fusion processing method based on multi-source heterogeneous data

The invention provides a fusion processing method based on multi-source heterogeneous data, and the method comprises the steps: building a business-based data space-time uncertainty and multi-dimensional relevance description method according to the technical characteristics, application demands and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG YAO, LI XIAOBIN, SHAO JINGJING, SONG YUNKUI, XIAO ZHANHUI, SHEN YUHONG, HUANG ZHUOHENG, LI WENJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG YAO
LI XIAOBIN
SHAO JINGJING
SONG YUNKUI
XIAO ZHANHUI
SHEN YUHONG
HUANG ZHUOHENG
LI WENJUN
description The invention provides a fusion processing method based on multi-source heterogeneous data, and the method comprises the steps: building a business-based data space-time uncertainty and multi-dimensional relevance description method according to the technical characteristics, application demands and power space-time characteristics of power big data; based on a multi-source heterogeneous data cleaning method and a fusion mechanism, a practical organization scheme of power big data is established and is used for realizing a customer demand-oriented data unified expression and optimization method; and establishing dynamic distributed storage adapting to the time-space attributes of the data. And the data reading efficiency is improved. 本发明提供的一种基于多源异构数据的融合处理方法,所述融合处理方法包括:根据电力大数据技术特性、应用需求和电力时空特性,建立基于业务的数据时空不确定性与多维关联性描述方法;基于多源异构数据清洁方法、融合机制,建立电力大数据的实用化的组织方案,用于实现以客户需求为导向的数据统一表达和优化方法;建立适应数据时空属性动态化的分布存储。提高数据的读取效率。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115543989A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115543989A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115543989A3</originalsourceid><addsrcrecordid>eNrjZHB0Ky3OzM9TKCjKT04tLs7MS1fITS3JyE9RSEosTk1RAErlluaUZOoW55cWJacqZKSWpBblp6fmpeaXFiukJJYk8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxGSg4pJ4Zz9DQ1NTE2NLC0tHY2LUAAA50TIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fusion processing method based on multi-source heterogeneous data</title><source>esp@cenet</source><creator>WANG YAO ; LI XIAOBIN ; SHAO JINGJING ; SONG YUNKUI ; XIAO ZHANHUI ; SHEN YUHONG ; HUANG ZHUOHENG ; LI WENJUN</creator><creatorcontrib>WANG YAO ; LI XIAOBIN ; SHAO JINGJING ; SONG YUNKUI ; XIAO ZHANHUI ; SHEN YUHONG ; HUANG ZHUOHENG ; LI WENJUN</creatorcontrib><description>The invention provides a fusion processing method based on multi-source heterogeneous data, and the method comprises the steps: building a business-based data space-time uncertainty and multi-dimensional relevance description method according to the technical characteristics, application demands and power space-time characteristics of power big data; based on a multi-source heterogeneous data cleaning method and a fusion mechanism, a practical organization scheme of power big data is established and is used for realizing a customer demand-oriented data unified expression and optimization method; and establishing dynamic distributed storage adapting to the time-space attributes of the data. And the data reading efficiency is improved. 本发明提供的一种基于多源异构数据的融合处理方法,所述融合处理方法包括:根据电力大数据技术特性、应用需求和电力时空特性,建立基于业务的数据时空不确定性与多维关联性描述方法;基于多源异构数据清洁方法、融合机制,建立电力大数据的实用化的组织方案,用于实现以客户需求为导向的数据统一表达和优化方法;建立适应数据时空属性动态化的分布存储。提高数据的读取效率。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221230&amp;DB=EPODOC&amp;CC=CN&amp;NR=115543989A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221230&amp;DB=EPODOC&amp;CC=CN&amp;NR=115543989A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG YAO</creatorcontrib><creatorcontrib>LI XIAOBIN</creatorcontrib><creatorcontrib>SHAO JINGJING</creatorcontrib><creatorcontrib>SONG YUNKUI</creatorcontrib><creatorcontrib>XIAO ZHANHUI</creatorcontrib><creatorcontrib>SHEN YUHONG</creatorcontrib><creatorcontrib>HUANG ZHUOHENG</creatorcontrib><creatorcontrib>LI WENJUN</creatorcontrib><title>Fusion processing method based on multi-source heterogeneous data</title><description>The invention provides a fusion processing method based on multi-source heterogeneous data, and the method comprises the steps: building a business-based data space-time uncertainty and multi-dimensional relevance description method according to the technical characteristics, application demands and power space-time characteristics of power big data; based on a multi-source heterogeneous data cleaning method and a fusion mechanism, a practical organization scheme of power big data is established and is used for realizing a customer demand-oriented data unified expression and optimization method; and establishing dynamic distributed storage adapting to the time-space attributes of the data. And the data reading efficiency is improved. 本发明提供的一种基于多源异构数据的融合处理方法,所述融合处理方法包括:根据电力大数据技术特性、应用需求和电力时空特性,建立基于业务的数据时空不确定性与多维关联性描述方法;基于多源异构数据清洁方法、融合机制,建立电力大数据的实用化的组织方案,用于实现以客户需求为导向的数据统一表达和优化方法;建立适应数据时空属性动态化的分布存储。提高数据的读取效率。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0Ky3OzM9TKCjKT04tLs7MS1fITS3JyE9RSEosTk1RAErlluaUZOoW55cWJacqZKSWpBblp6fmpeaXFiukJJYk8jCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxGSg4pJ4Zz9DQ1NTE2NLC0tHY2LUAAA50TIw</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>WANG YAO</creator><creator>LI XIAOBIN</creator><creator>SHAO JINGJING</creator><creator>SONG YUNKUI</creator><creator>XIAO ZHANHUI</creator><creator>SHEN YUHONG</creator><creator>HUANG ZHUOHENG</creator><creator>LI WENJUN</creator><scope>EVB</scope></search><sort><creationdate>20221230</creationdate><title>Fusion processing method based on multi-source heterogeneous data</title><author>WANG YAO ; LI XIAOBIN ; SHAO JINGJING ; SONG YUNKUI ; XIAO ZHANHUI ; SHEN YUHONG ; HUANG ZHUOHENG ; LI WENJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115543989A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG YAO</creatorcontrib><creatorcontrib>LI XIAOBIN</creatorcontrib><creatorcontrib>SHAO JINGJING</creatorcontrib><creatorcontrib>SONG YUNKUI</creatorcontrib><creatorcontrib>XIAO ZHANHUI</creatorcontrib><creatorcontrib>SHEN YUHONG</creatorcontrib><creatorcontrib>HUANG ZHUOHENG</creatorcontrib><creatorcontrib>LI WENJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG YAO</au><au>LI XIAOBIN</au><au>SHAO JINGJING</au><au>SONG YUNKUI</au><au>XIAO ZHANHUI</au><au>SHEN YUHONG</au><au>HUANG ZHUOHENG</au><au>LI WENJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fusion processing method based on multi-source heterogeneous data</title><date>2022-12-30</date><risdate>2022</risdate><abstract>The invention provides a fusion processing method based on multi-source heterogeneous data, and the method comprises the steps: building a business-based data space-time uncertainty and multi-dimensional relevance description method according to the technical characteristics, application demands and power space-time characteristics of power big data; based on a multi-source heterogeneous data cleaning method and a fusion mechanism, a practical organization scheme of power big data is established and is used for realizing a customer demand-oriented data unified expression and optimization method; and establishing dynamic distributed storage adapting to the time-space attributes of the data. And the data reading efficiency is improved. 本发明提供的一种基于多源异构数据的融合处理方法,所述融合处理方法包括:根据电力大数据技术特性、应用需求和电力时空特性,建立基于业务的数据时空不确定性与多维关联性描述方法;基于多源异构数据清洁方法、融合机制,建立电力大数据的实用化的组织方案,用于实现以客户需求为导向的数据统一表达和优化方法;建立适应数据时空属性动态化的分布存储。提高数据的读取效率。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115543989A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Fusion processing method based on multi-source heterogeneous data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20YAO&rft.date=2022-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115543989A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true