Adaptive symbol regression method based on multi-task genetic programming algorithm
The invention discloses a self-adaptive symbol regression method based on a multi-task genetic programming algorithm, and the method comprises the following steps: firstly constructing a scalable gene expression coding mode for uniformly coding a plurality of different problems, initializing populat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MIAO ZHIBIN ZHONG JINGHUI |
description | The invention discloses a self-adaptive symbol regression method based on a multi-task genetic programming algorithm, and the method comprises the following steps: firstly constructing a scalable gene expression coding mode for uniformly coding a plurality of different problems, initializing population individuals according to the coding mode, and carrying out the evaluation on all tasks; then, according to crossover parameter selection, performing type selection crossover operation or guide mutation operation on the population, and in the process, by adopting a self-adaptive control strategy on the crossover parameter, adjusting an evolution behavior so as to improve the search efficiency; next, a connection selection operation is executed to select an individual entering the next generation, and a self-adaptive computing resource redistribution mechanism is constructed to enable a task with relatively backward performance to obtain more computing resources. According to the method, crossover mutation operat |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115543556A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115543556A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115543556A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAHvxIOof1gf0UGq8l6J48qL3sm3WdDHJhmwU_L0UfICnYWBmXd06i6nwm0A_YRQPmVwmVZYIgcosFkZUsrD4yxeuC-oTHEUqPEHK4jKGwNEBeieZyxy21eqBXmn346ban0_3_lJTkoE04bTcQ39tGmMOrTHHrv2n-QKlKzkW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Adaptive symbol regression method based on multi-task genetic programming algorithm</title><source>esp@cenet</source><creator>MIAO ZHIBIN ; ZHONG JINGHUI</creator><creatorcontrib>MIAO ZHIBIN ; ZHONG JINGHUI</creatorcontrib><description>The invention discloses a self-adaptive symbol regression method based on a multi-task genetic programming algorithm, and the method comprises the following steps: firstly constructing a scalable gene expression coding mode for uniformly coding a plurality of different problems, initializing population individuals according to the coding mode, and carrying out the evaluation on all tasks; then, according to crossover parameter selection, performing type selection crossover operation or guide mutation operation on the population, and in the process, by adopting a self-adaptive control strategy on the crossover parameter, adjusting an evolution behavior so as to improve the search efficiency; next, a connection selection operation is executed to select an individual entering the next generation, and a self-adaptive computing resource redistribution mechanism is constructed to enable a task with relatively backward performance to obtain more computing resources. According to the method, crossover mutation operat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115543556A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115543556A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MIAO ZHIBIN</creatorcontrib><creatorcontrib>ZHONG JINGHUI</creatorcontrib><title>Adaptive symbol regression method based on multi-task genetic programming algorithm</title><description>The invention discloses a self-adaptive symbol regression method based on a multi-task genetic programming algorithm, and the method comprises the following steps: firstly constructing a scalable gene expression coding mode for uniformly coding a plurality of different problems, initializing population individuals according to the coding mode, and carrying out the evaluation on all tasks; then, according to crossover parameter selection, performing type selection crossover operation or guide mutation operation on the population, and in the process, by adopting a self-adaptive control strategy on the crossover parameter, adjusting an evolution behavior so as to improve the search efficiency; next, a connection selection operation is executed to select an individual entering the next generation, and a self-adaptive computing resource redistribution mechanism is constructed to enable a task with relatively backward performance to obtain more computing resources. According to the method, crossover mutation operat</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQAHvxIOof1gf0UGq8l6J48qL3sm3WdDHJhmwU_L0UfICnYWBmXd06i6nwm0A_YRQPmVwmVZYIgcosFkZUsrD4yxeuC-oTHEUqPEHK4jKGwNEBeieZyxy21eqBXmn346ban0_3_lJTkoE04bTcQ39tGmMOrTHHrv2n-QKlKzkW</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>MIAO ZHIBIN</creator><creator>ZHONG JINGHUI</creator><scope>EVB</scope></search><sort><creationdate>20221230</creationdate><title>Adaptive symbol regression method based on multi-task genetic programming algorithm</title><author>MIAO ZHIBIN ; ZHONG JINGHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115543556A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MIAO ZHIBIN</creatorcontrib><creatorcontrib>ZHONG JINGHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MIAO ZHIBIN</au><au>ZHONG JINGHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Adaptive symbol regression method based on multi-task genetic programming algorithm</title><date>2022-12-30</date><risdate>2022</risdate><abstract>The invention discloses a self-adaptive symbol regression method based on a multi-task genetic programming algorithm, and the method comprises the following steps: firstly constructing a scalable gene expression coding mode for uniformly coding a plurality of different problems, initializing population individuals according to the coding mode, and carrying out the evaluation on all tasks; then, according to crossover parameter selection, performing type selection crossover operation or guide mutation operation on the population, and in the process, by adopting a self-adaptive control strategy on the crossover parameter, adjusting an evolution behavior so as to improve the search efficiency; next, a connection selection operation is executed to select an individual entering the next generation, and a self-adaptive computing resource redistribution mechanism is constructed to enable a task with relatively backward performance to obtain more computing resources. According to the method, crossover mutation operat</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115543556A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Adaptive symbol regression method based on multi-task genetic programming algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MIAO%20ZHIBIN&rft.date=2022-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115543556A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |