Method for coding photonic crystal through deep neural network based on self-attention
The invention discloses a method for coding a photonic crystal based on a self-attention deep neural network, and provides a POViT model, and the POViT model is applied to the coded photonic crystal. The method comprises the following steps: acquiring a geometric structure parameter image of the pho...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG ZHAOYU LI RENJIE YU YUEYAO LI WENYE |
description | The invention discloses a method for coding a photonic crystal based on a self-attention deep neural network, and provides a POViT model, and the POViT model is applied to the coded photonic crystal. The method comprises the following steps: acquiring a geometric structure parameter image of the photonic crystal; the photonic crystal is provided with a plurality of air holes, and each pixel of a geometric structure parameter image of the photonic crystal comprises the position and the radius of the air hole; carrying out dimension remodeling on the geometric structure parameter image to obtain a plurality of patch images; inputting the patch image into an embedding module and a position coding module to obtain a symbol sequence; inputting the symbol sequence into a transform coding module to obtain a coding feature; and inputting the coding features into a full connection layer module to obtain a quality factor Q and a mode volume V. The POViT applies a self-attention Transform model to the field of photoelec |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115542433A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115542433A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115542433A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAHPxIOof1gf0UNM-QIriRU_itcRk0wTDbki2iL-3Bx_gaWAYZq0eV5TADjwXsOwiTZADC1O0YMunikkgofA8BXCIGQjnsjhCeXN5wdNUdMAEFZNvjAiSRKatWnmTKu5-3Kj9-XQfLg1mHrFmY3E5jMOtbfu-O3RaH_U_zRc9FjnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for coding photonic crystal through deep neural network based on self-attention</title><source>esp@cenet</source><creator>ZHANG ZHAOYU ; LI RENJIE ; YU YUEYAO ; LI WENYE</creator><creatorcontrib>ZHANG ZHAOYU ; LI RENJIE ; YU YUEYAO ; LI WENYE</creatorcontrib><description>The invention discloses a method for coding a photonic crystal based on a self-attention deep neural network, and provides a POViT model, and the POViT model is applied to the coded photonic crystal. The method comprises the following steps: acquiring a geometric structure parameter image of the photonic crystal; the photonic crystal is provided with a plurality of air holes, and each pixel of a geometric structure parameter image of the photonic crystal comprises the position and the radius of the air hole; carrying out dimension remodeling on the geometric structure parameter image to obtain a plurality of patch images; inputting the patch image into an embedding module and a position coding module to obtain a symbol sequence; inputting the symbol sequence into a transform coding module to obtain a coding feature; and inputting the coding features into a full connection layer module to obtain a quality factor Q and a mode volume V. The POViT applies a self-attention Transform model to the field of photoelec</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS ; OPTICS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115542433A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221230&DB=EPODOC&CC=CN&NR=115542433A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG ZHAOYU</creatorcontrib><creatorcontrib>LI RENJIE</creatorcontrib><creatorcontrib>YU YUEYAO</creatorcontrib><creatorcontrib>LI WENYE</creatorcontrib><title>Method for coding photonic crystal through deep neural network based on self-attention</title><description>The invention discloses a method for coding a photonic crystal based on a self-attention deep neural network, and provides a POViT model, and the POViT model is applied to the coded photonic crystal. The method comprises the following steps: acquiring a geometric structure parameter image of the photonic crystal; the photonic crystal is provided with a plurality of air holes, and each pixel of a geometric structure parameter image of the photonic crystal comprises the position and the radius of the air hole; carrying out dimension remodeling on the geometric structure parameter image to obtain a plurality of patch images; inputting the patch image into an embedding module and a position coding module to obtain a symbol sequence; inputting the symbol sequence into a transform coding module to obtain a coding feature; and inputting the coding features into a full connection layer module to obtain a quality factor Q and a mode volume V. The POViT applies a self-attention Transform model to the field of photoelec</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</subject><subject>OPTICS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQAHPxIOof1gf0UNM-QIriRU_itcRk0wTDbki2iL-3Bx_gaWAYZq0eV5TADjwXsOwiTZADC1O0YMunikkgofA8BXCIGQjnsjhCeXN5wdNUdMAEFZNvjAiSRKatWnmTKu5-3Kj9-XQfLg1mHrFmY3E5jMOtbfu-O3RaH_U_zRc9FjnQ</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>ZHANG ZHAOYU</creator><creator>LI RENJIE</creator><creator>YU YUEYAO</creator><creator>LI WENYE</creator><scope>EVB</scope></search><sort><creationdate>20221230</creationdate><title>Method for coding photonic crystal through deep neural network based on self-attention</title><author>ZHANG ZHAOYU ; LI RENJIE ; YU YUEYAO ; LI WENYE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115542433A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS</topic><topic>OPTICS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG ZHAOYU</creatorcontrib><creatorcontrib>LI RENJIE</creatorcontrib><creatorcontrib>YU YUEYAO</creatorcontrib><creatorcontrib>LI WENYE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG ZHAOYU</au><au>LI RENJIE</au><au>YU YUEYAO</au><au>LI WENYE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for coding photonic crystal through deep neural network based on self-attention</title><date>2022-12-30</date><risdate>2022</risdate><abstract>The invention discloses a method for coding a photonic crystal based on a self-attention deep neural network, and provides a POViT model, and the POViT model is applied to the coded photonic crystal. The method comprises the following steps: acquiring a geometric structure parameter image of the photonic crystal; the photonic crystal is provided with a plurality of air holes, and each pixel of a geometric structure parameter image of the photonic crystal comprises the position and the radius of the air hole; carrying out dimension remodeling on the geometric structure parameter image to obtain a plurality of patch images; inputting the patch image into an embedding module and a position coding module to obtain a symbol sequence; inputting the symbol sequence into a transform coding module to obtain a coding feature; and inputting the coding features into a full connection layer module to obtain a quality factor Q and a mode volume V. The POViT applies a self-attention Transform model to the field of photoelec</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115542433A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS OPTICS PHYSICS |
title | Method for coding photonic crystal through deep neural network based on self-attention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20ZHAOYU&rft.date=2022-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115542433A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |