Text image generation method based on modulation fusion and generative adversarial network

The invention discloses a text image generation method based on modulation fusion and a comparative learning generative adversarial network, and the method comprises the following steps: building a modulation fusion module, designing a residual structure, comprising two text feature transformation l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: REN SHENGBO, ZHANG JIE, CHEN SHIYU, ZHOU SIJIE, GAO WENCHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator REN SHENGBO
ZHANG JIE
CHEN SHIYU
ZHOU SIJIE
GAO WENCHAO
description The invention discloses a text image generation method based on modulation fusion and a comparative learning generative adversarial network, and the method comprises the following steps: building a modulation fusion module, designing a residual structure, comprising two text feature transformation layers of a main path, two convolution layers, and a convolution layer of a branch; a generator is established, and the generator is composed of a mapping network, eight modulation fusion modules, six up-sampling modules and a convolutional layer. A judger network structure is established, and the judger is composed of a feature extractor and three branches, wherein the three branches comprise a semantic reconstruction branch, an unconditional loss branch and a conditional loss branch. Establishing a comparative learning network to compare loss; and optimizing a loss function, wherein the loss function comprises generative adversarial loss and semantic reconstruction loss. According to the method, the image which is
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115527216A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115527216A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115527216A3</originalsourceid><addsrcrecordid>eNrjZIgKSa0oUcjMTUxPVUhPzUstSizJzM9TyE0tychPUUhKLE5NUQDx81NKcyBSaaXFICoxLwWuoSxVITGlLLWoOLEoMzFHIS-1pDy_KJuHgTUtMac4lRdKczMourmGOHvophbkx6cWFyQmA7WXxDv7GRqamhqZGxmaORoTowYAXHk7kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Text image generation method based on modulation fusion and generative adversarial network</title><source>esp@cenet</source><creator>REN SHENGBO ; ZHANG JIE ; CHEN SHIYU ; ZHOU SIJIE ; GAO WENCHAO</creator><creatorcontrib>REN SHENGBO ; ZHANG JIE ; CHEN SHIYU ; ZHOU SIJIE ; GAO WENCHAO</creatorcontrib><description>The invention discloses a text image generation method based on modulation fusion and a comparative learning generative adversarial network, and the method comprises the following steps: building a modulation fusion module, designing a residual structure, comprising two text feature transformation layers of a main path, two convolution layers, and a convolution layer of a branch; a generator is established, and the generator is composed of a mapping network, eight modulation fusion modules, six up-sampling modules and a convolutional layer. A judger network structure is established, and the judger is composed of a feature extractor and three branches, wherein the three branches comprise a semantic reconstruction branch, an unconditional loss branch and a conditional loss branch. Establishing a comparative learning network to compare loss; and optimizing a loss function, wherein the loss function comprises generative adversarial loss and semantic reconstruction loss. According to the method, the image which is</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221227&amp;DB=EPODOC&amp;CC=CN&amp;NR=115527216A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221227&amp;DB=EPODOC&amp;CC=CN&amp;NR=115527216A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REN SHENGBO</creatorcontrib><creatorcontrib>ZHANG JIE</creatorcontrib><creatorcontrib>CHEN SHIYU</creatorcontrib><creatorcontrib>ZHOU SIJIE</creatorcontrib><creatorcontrib>GAO WENCHAO</creatorcontrib><title>Text image generation method based on modulation fusion and generative adversarial network</title><description>The invention discloses a text image generation method based on modulation fusion and a comparative learning generative adversarial network, and the method comprises the following steps: building a modulation fusion module, designing a residual structure, comprising two text feature transformation layers of a main path, two convolution layers, and a convolution layer of a branch; a generator is established, and the generator is composed of a mapping network, eight modulation fusion modules, six up-sampling modules and a convolutional layer. A judger network structure is established, and the judger is composed of a feature extractor and three branches, wherein the three branches comprise a semantic reconstruction branch, an unconditional loss branch and a conditional loss branch. Establishing a comparative learning network to compare loss; and optimizing a loss function, wherein the loss function comprises generative adversarial loss and semantic reconstruction loss. According to the method, the image which is</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgKSa0oUcjMTUxPVUhPzUstSizJzM9TyE0tychPUUhKLE5NUQDx81NKcyBSaaXFICoxLwWuoSxVITGlLLWoOLEoMzFHIS-1pDy_KJuHgTUtMac4lRdKczMourmGOHvophbkx6cWFyQmA7WXxDv7GRqamhqZGxmaORoTowYAXHk7kw</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>REN SHENGBO</creator><creator>ZHANG JIE</creator><creator>CHEN SHIYU</creator><creator>ZHOU SIJIE</creator><creator>GAO WENCHAO</creator><scope>EVB</scope></search><sort><creationdate>20221227</creationdate><title>Text image generation method based on modulation fusion and generative adversarial network</title><author>REN SHENGBO ; ZHANG JIE ; CHEN SHIYU ; ZHOU SIJIE ; GAO WENCHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115527216A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>REN SHENGBO</creatorcontrib><creatorcontrib>ZHANG JIE</creatorcontrib><creatorcontrib>CHEN SHIYU</creatorcontrib><creatorcontrib>ZHOU SIJIE</creatorcontrib><creatorcontrib>GAO WENCHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REN SHENGBO</au><au>ZHANG JIE</au><au>CHEN SHIYU</au><au>ZHOU SIJIE</au><au>GAO WENCHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Text image generation method based on modulation fusion and generative adversarial network</title><date>2022-12-27</date><risdate>2022</risdate><abstract>The invention discloses a text image generation method based on modulation fusion and a comparative learning generative adversarial network, and the method comprises the following steps: building a modulation fusion module, designing a residual structure, comprising two text feature transformation layers of a main path, two convolution layers, and a convolution layer of a branch; a generator is established, and the generator is composed of a mapping network, eight modulation fusion modules, six up-sampling modules and a convolutional layer. A judger network structure is established, and the judger is composed of a feature extractor and three branches, wherein the three branches comprise a semantic reconstruction branch, an unconditional loss branch and a conditional loss branch. Establishing a comparative learning network to compare loss; and optimizing a loss function, wherein the loss function comprises generative adversarial loss and semantic reconstruction loss. According to the method, the image which is</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115527216A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Text image generation method based on modulation fusion and generative adversarial network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REN%20SHENGBO&rft.date=2022-12-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115527216A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true