Multi-corpus mixed attention-assisted machine translation algorithm and system

The invention discloses a multi-corpus mixed attention-assisted machine translation algorithm, which comprises the following steps of: collecting three types of parallel corpora of different sources of English and Chinese contrasts, and mixing the parallel corpora into training corpora according to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZENG BIAO, ZHANG HAOCHUN, AN SHENGQIANG, ZOU ANCHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZENG BIAO
ZHANG HAOCHUN
AN SHENGQIANG
ZOU ANCHAO
description The invention discloses a multi-corpus mixed attention-assisted machine translation algorithm, which comprises the following steps of: collecting three types of parallel corpora of different sources of English and Chinese contrasts, and mixing the parallel corpora into training corpora according to a ratio of 1: 1: 1; the neural network model is used for training a transformers neural network model based on the seq2seq architecture; inputting a to-be-translated English sentence into a manually collected professional word-English contrast word list of each field to search professional words and corresponding Chinese translations; inputting English sentences into the trained neural network model, translating word by word, selecting a result with the highest probability as a translation result, gradually calculating an attention matrix of professional words, calculating an attention value, and when the attention value exceeds a certain threshold value, executing the step-by-step translation; if the probability o
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115526187A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115526187A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115526187A3</originalsourceid><addsrcrecordid>eNqNijsKwkAQQNNYiHqH8QBbrBJNK0GxMZV9GDajGdgfOxPQ2xvBA1g9eO8tq-42eWXjUsmTQOAXDYCqFJVTNCjCorMK6EaOBFowisdvBPTPVFjHABgHkPc8hnW1eKAX2vy4qraX8729GsqpJ8noKJL2bWdtXe8Otjme9v88H5WSN44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-corpus mixed attention-assisted machine translation algorithm and system</title><source>esp@cenet</source><creator>ZENG BIAO ; ZHANG HAOCHUN ; AN SHENGQIANG ; ZOU ANCHAO</creator><creatorcontrib>ZENG BIAO ; ZHANG HAOCHUN ; AN SHENGQIANG ; ZOU ANCHAO</creatorcontrib><description>The invention discloses a multi-corpus mixed attention-assisted machine translation algorithm, which comprises the following steps of: collecting three types of parallel corpora of different sources of English and Chinese contrasts, and mixing the parallel corpora into training corpora according to a ratio of 1: 1: 1; the neural network model is used for training a transformers neural network model based on the seq2seq architecture; inputting a to-be-translated English sentence into a manually collected professional word-English contrast word list of each field to search professional words and corresponding Chinese translations; inputting English sentences into the trained neural network model, translating word by word, selecting a result with the highest probability as a translation result, gradually calculating an attention matrix of professional words, calculating an attention value, and when the attention value exceeds a certain threshold value, executing the step-by-step translation; if the probability o</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221227&amp;DB=EPODOC&amp;CC=CN&amp;NR=115526187A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221227&amp;DB=EPODOC&amp;CC=CN&amp;NR=115526187A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZENG BIAO</creatorcontrib><creatorcontrib>ZHANG HAOCHUN</creatorcontrib><creatorcontrib>AN SHENGQIANG</creatorcontrib><creatorcontrib>ZOU ANCHAO</creatorcontrib><title>Multi-corpus mixed attention-assisted machine translation algorithm and system</title><description>The invention discloses a multi-corpus mixed attention-assisted machine translation algorithm, which comprises the following steps of: collecting three types of parallel corpora of different sources of English and Chinese contrasts, and mixing the parallel corpora into training corpora according to a ratio of 1: 1: 1; the neural network model is used for training a transformers neural network model based on the seq2seq architecture; inputting a to-be-translated English sentence into a manually collected professional word-English contrast word list of each field to search professional words and corresponding Chinese translations; inputting English sentences into the trained neural network model, translating word by word, selecting a result with the highest probability as a translation result, gradually calculating an attention matrix of professional words, calculating an attention value, and when the attention value exceeds a certain threshold value, executing the step-by-step translation; if the probability o</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsKwkAQQNNYiHqH8QBbrBJNK0GxMZV9GDajGdgfOxPQ2xvBA1g9eO8tq-42eWXjUsmTQOAXDYCqFJVTNCjCorMK6EaOBFowisdvBPTPVFjHABgHkPc8hnW1eKAX2vy4qraX8729GsqpJ8noKJL2bWdtXe8Otjme9v88H5WSN44</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>ZENG BIAO</creator><creator>ZHANG HAOCHUN</creator><creator>AN SHENGQIANG</creator><creator>ZOU ANCHAO</creator><scope>EVB</scope></search><sort><creationdate>20221227</creationdate><title>Multi-corpus mixed attention-assisted machine translation algorithm and system</title><author>ZENG BIAO ; ZHANG HAOCHUN ; AN SHENGQIANG ; ZOU ANCHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115526187A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZENG BIAO</creatorcontrib><creatorcontrib>ZHANG HAOCHUN</creatorcontrib><creatorcontrib>AN SHENGQIANG</creatorcontrib><creatorcontrib>ZOU ANCHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZENG BIAO</au><au>ZHANG HAOCHUN</au><au>AN SHENGQIANG</au><au>ZOU ANCHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-corpus mixed attention-assisted machine translation algorithm and system</title><date>2022-12-27</date><risdate>2022</risdate><abstract>The invention discloses a multi-corpus mixed attention-assisted machine translation algorithm, which comprises the following steps of: collecting three types of parallel corpora of different sources of English and Chinese contrasts, and mixing the parallel corpora into training corpora according to a ratio of 1: 1: 1; the neural network model is used for training a transformers neural network model based on the seq2seq architecture; inputting a to-be-translated English sentence into a manually collected professional word-English contrast word list of each field to search professional words and corresponding Chinese translations; inputting English sentences into the trained neural network model, translating word by word, selecting a result with the highest probability as a translation result, gradually calculating an attention matrix of professional words, calculating an attention value, and when the attention value exceeds a certain threshold value, executing the step-by-step translation; if the probability o</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115526187A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Multi-corpus mixed attention-assisted machine translation algorithm and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZENG%20BIAO&rft.date=2022-12-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115526187A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true