Cognitive edge computing node parameter optimization method and device based on reinforcement learning

The invention provides a cognitive edge computing node parameter optimization method and device based on reinforcement learning. The method comprises the following steps: determining a partial observable Markov decision model based on a frequency band use state of a current time slot of a main user...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHAI HAOJUN, LIU WEIWAN, MU MINGLEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHAI HAOJUN
LIU WEIWAN
MU MINGLEI
description The invention provides a cognitive edge computing node parameter optimization method and device based on reinforcement learning. The method comprises the following steps: determining a partial observable Markov decision model based on a frequency band use state of a current time slot of a main user side, and determining a belief probability corresponding to the main user side in each time slot in the future and an observation probability and reward corresponding to a secondary user side in each time slot in the future by using the partial observable Markov decision model; and based on the belief probability, the observation probability and the reward corresponding to each time slot in the future, and the target state probability of the secondary user side, constructing a Bellman optimization model, and based on the Bellman optimization model, maximizing an average reward within a preset future time slot range in a corresponding target state, and determining a corresponding cognitive edge computing node parame
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115515149A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115515149A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115515149A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBNNQIOAPxwMoLEhBiaIgKir66LA34aT4znJMCl5PCh5AtdLMaNdV39igUmQGIQwgbzG9i-hAagGUOHNEQSZLRaJ8uIgpLehlgVgDBcziQU-eEGhRGaK9ZY8ILTSCsy5v22rV8zhh99tNtb-2j-Z2QLIOU2IPRemau3N17Wp3Ol-O_zRfxbxALw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cognitive edge computing node parameter optimization method and device based on reinforcement learning</title><source>esp@cenet</source><creator>CHAI HAOJUN ; LIU WEIWAN ; MU MINGLEI</creator><creatorcontrib>CHAI HAOJUN ; LIU WEIWAN ; MU MINGLEI</creatorcontrib><description>The invention provides a cognitive edge computing node parameter optimization method and device based on reinforcement learning. The method comprises the following steps: determining a partial observable Markov decision model based on a frequency band use state of a current time slot of a main user side, and determining a belief probability corresponding to the main user side in each time slot in the future and an observation probability and reward corresponding to a secondary user side in each time slot in the future by using the partial observable Markov decision model; and based on the belief probability, the observation probability and the reward corresponding to each time slot in the future, and the target state probability of the secondary user side, constructing a Bellman optimization model, and based on the Bellman optimization model, maximizing an average reward within a preset future time slot range in a corresponding target state, and determining a corresponding cognitive edge computing node parame</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115515149A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115515149A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHAI HAOJUN</creatorcontrib><creatorcontrib>LIU WEIWAN</creatorcontrib><creatorcontrib>MU MINGLEI</creatorcontrib><title>Cognitive edge computing node parameter optimization method and device based on reinforcement learning</title><description>The invention provides a cognitive edge computing node parameter optimization method and device based on reinforcement learning. The method comprises the following steps: determining a partial observable Markov decision model based on a frequency band use state of a current time slot of a main user side, and determining a belief probability corresponding to the main user side in each time slot in the future and an observation probability and reward corresponding to a secondary user side in each time slot in the future by using the partial observable Markov decision model; and based on the belief probability, the observation probability and the reward corresponding to each time slot in the future, and the target state probability of the secondary user side, constructing a Bellman optimization model, and based on the Bellman optimization model, maximizing an average reward within a preset future time slot range in a corresponding target state, and determining a corresponding cognitive edge computing node parame</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBNNQIOAPxwMoLEhBiaIgKir66LA34aT4znJMCl5PCh5AtdLMaNdV39igUmQGIQwgbzG9i-hAagGUOHNEQSZLRaJ8uIgpLehlgVgDBcziQU-eEGhRGaK9ZY8ILTSCsy5v22rV8zhh99tNtb-2j-Z2QLIOU2IPRemau3N17Wp3Ol-O_zRfxbxALw</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>CHAI HAOJUN</creator><creator>LIU WEIWAN</creator><creator>MU MINGLEI</creator><scope>EVB</scope></search><sort><creationdate>20221223</creationdate><title>Cognitive edge computing node parameter optimization method and device based on reinforcement learning</title><author>CHAI HAOJUN ; LIU WEIWAN ; MU MINGLEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115515149A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHAI HAOJUN</creatorcontrib><creatorcontrib>LIU WEIWAN</creatorcontrib><creatorcontrib>MU MINGLEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHAI HAOJUN</au><au>LIU WEIWAN</au><au>MU MINGLEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cognitive edge computing node parameter optimization method and device based on reinforcement learning</title><date>2022-12-23</date><risdate>2022</risdate><abstract>The invention provides a cognitive edge computing node parameter optimization method and device based on reinforcement learning. The method comprises the following steps: determining a partial observable Markov decision model based on a frequency band use state of a current time slot of a main user side, and determining a belief probability corresponding to the main user side in each time slot in the future and an observation probability and reward corresponding to a secondary user side in each time slot in the future by using the partial observable Markov decision model; and based on the belief probability, the observation probability and the reward corresponding to each time slot in the future, and the target state probability of the secondary user side, constructing a Bellman optimization model, and based on the Bellman optimization model, maximizing an average reward within a preset future time slot range in a corresponding target state, and determining a corresponding cognitive edge computing node parame</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115515149A
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
WIRELESS COMMUNICATIONS NETWORKS
title Cognitive edge computing node parameter optimization method and device based on reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHAI%20HAOJUN&rft.date=2022-12-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115515149A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true