Convolutional neural network facial emotion recognition method and system based on attention mechanism

The invention discloses a convolutional neural network facial emotion recognition method and system based on an attention mechanism, and the method comprises the steps: collecting face image data, and dividing the face image data into a training set and a test set according to a proportion; inputtin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG ZHIYONG, ZHAO CHANGWEI, LI YUXIANG, ZHANG LILI, JING JUNCHANG, XIANG FEI, MAO YUEHENG, SONG BIN, ZHANG ZHONGYA, KONG GONGSHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG ZHIYONG
ZHAO CHANGWEI
LI YUXIANG
ZHANG LILI
JING JUNCHANG
XIANG FEI
MAO YUEHENG
SONG BIN
ZHANG ZHONGYA
KONG GONGSHENG
description The invention discloses a convolutional neural network facial emotion recognition method and system based on an attention mechanism, and the method comprises the steps: collecting face image data, and dividing the face image data into a training set and a test set according to a proportion; inputting the face image data in the training set into a convolutional neural network model for feature learning to obtain face emotion feature data; testing the convolutional neural network model in a test set, and optimizing parameters of the convolutional neural network model; inputting to-be-recognized face image data into the optimized convolutional neural network model to obtain an emotion classification result; according to the method, the change of the user emotion can be recognized, the accuracy of the user emotion recognition can be improved, the detection accuracy is improved through the face micro-expression action detection of the convolutional neural network by utilizing a plurality of convolution and pooling
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115512422A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115512422A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115512422A3</originalsourceid><addsrcrecordid>eNqNjTEOwjAQBNNQIOAPxwMobMgDkAWioqKPDvtCLOy7yHZA_J4Q5QFUu6sZaZdVa4RfEobihTEA05CmKG9JT2jR-nFSlB-HRFYe7KceqXTiANlB_uRCEe6YycGIsBTiWbIdss9xXS1aDJk2c66q7fl0M5cd9dJQ7tHS-NmYq1J1rfRB6-P-H-cLArFAdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Convolutional neural network facial emotion recognition method and system based on attention mechanism</title><source>esp@cenet</source><creator>ZHANG ZHIYONG ; ZHAO CHANGWEI ; LI YUXIANG ; ZHANG LILI ; JING JUNCHANG ; XIANG FEI ; MAO YUEHENG ; SONG BIN ; ZHANG ZHONGYA ; KONG GONGSHENG</creator><creatorcontrib>ZHANG ZHIYONG ; ZHAO CHANGWEI ; LI YUXIANG ; ZHANG LILI ; JING JUNCHANG ; XIANG FEI ; MAO YUEHENG ; SONG BIN ; ZHANG ZHONGYA ; KONG GONGSHENG</creatorcontrib><description>The invention discloses a convolutional neural network facial emotion recognition method and system based on an attention mechanism, and the method comprises the steps: collecting face image data, and dividing the face image data into a training set and a test set according to a proportion; inputting the face image data in the training set into a convolutional neural network model for feature learning to obtain face emotion feature data; testing the convolutional neural network model in a test set, and optimizing parameters of the convolutional neural network model; inputting to-be-recognized face image data into the optimized convolutional neural network model to obtain an emotion classification result; according to the method, the change of the user emotion can be recognized, the accuracy of the user emotion recognition can be improved, the detection accuracy is improved through the face micro-expression action detection of the convolutional neural network by utilizing a plurality of convolution and pooling</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115512422A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115512422A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG ZHIYONG</creatorcontrib><creatorcontrib>ZHAO CHANGWEI</creatorcontrib><creatorcontrib>LI YUXIANG</creatorcontrib><creatorcontrib>ZHANG LILI</creatorcontrib><creatorcontrib>JING JUNCHANG</creatorcontrib><creatorcontrib>XIANG FEI</creatorcontrib><creatorcontrib>MAO YUEHENG</creatorcontrib><creatorcontrib>SONG BIN</creatorcontrib><creatorcontrib>ZHANG ZHONGYA</creatorcontrib><creatorcontrib>KONG GONGSHENG</creatorcontrib><title>Convolutional neural network facial emotion recognition method and system based on attention mechanism</title><description>The invention discloses a convolutional neural network facial emotion recognition method and system based on an attention mechanism, and the method comprises the steps: collecting face image data, and dividing the face image data into a training set and a test set according to a proportion; inputting the face image data in the training set into a convolutional neural network model for feature learning to obtain face emotion feature data; testing the convolutional neural network model in a test set, and optimizing parameters of the convolutional neural network model; inputting to-be-recognized face image data into the optimized convolutional neural network model to obtain an emotion classification result; according to the method, the change of the user emotion can be recognized, the accuracy of the user emotion recognition can be improved, the detection accuracy is improved through the face micro-expression action detection of the convolutional neural network by utilizing a plurality of convolution and pooling</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEOwjAQBNNQIOAPxwMobMgDkAWioqKPDvtCLOy7yHZA_J4Q5QFUu6sZaZdVa4RfEobihTEA05CmKG9JT2jR-nFSlB-HRFYe7KceqXTiANlB_uRCEe6YycGIsBTiWbIdss9xXS1aDJk2c66q7fl0M5cd9dJQ7tHS-NmYq1J1rfRB6-P-H-cLArFAdQ</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>ZHANG ZHIYONG</creator><creator>ZHAO CHANGWEI</creator><creator>LI YUXIANG</creator><creator>ZHANG LILI</creator><creator>JING JUNCHANG</creator><creator>XIANG FEI</creator><creator>MAO YUEHENG</creator><creator>SONG BIN</creator><creator>ZHANG ZHONGYA</creator><creator>KONG GONGSHENG</creator><scope>EVB</scope></search><sort><creationdate>20221223</creationdate><title>Convolutional neural network facial emotion recognition method and system based on attention mechanism</title><author>ZHANG ZHIYONG ; ZHAO CHANGWEI ; LI YUXIANG ; ZHANG LILI ; JING JUNCHANG ; XIANG FEI ; MAO YUEHENG ; SONG BIN ; ZHANG ZHONGYA ; KONG GONGSHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115512422A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG ZHIYONG</creatorcontrib><creatorcontrib>ZHAO CHANGWEI</creatorcontrib><creatorcontrib>LI YUXIANG</creatorcontrib><creatorcontrib>ZHANG LILI</creatorcontrib><creatorcontrib>JING JUNCHANG</creatorcontrib><creatorcontrib>XIANG FEI</creatorcontrib><creatorcontrib>MAO YUEHENG</creatorcontrib><creatorcontrib>SONG BIN</creatorcontrib><creatorcontrib>ZHANG ZHONGYA</creatorcontrib><creatorcontrib>KONG GONGSHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG ZHIYONG</au><au>ZHAO CHANGWEI</au><au>LI YUXIANG</au><au>ZHANG LILI</au><au>JING JUNCHANG</au><au>XIANG FEI</au><au>MAO YUEHENG</au><au>SONG BIN</au><au>ZHANG ZHONGYA</au><au>KONG GONGSHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Convolutional neural network facial emotion recognition method and system based on attention mechanism</title><date>2022-12-23</date><risdate>2022</risdate><abstract>The invention discloses a convolutional neural network facial emotion recognition method and system based on an attention mechanism, and the method comprises the steps: collecting face image data, and dividing the face image data into a training set and a test set according to a proportion; inputting the face image data in the training set into a convolutional neural network model for feature learning to obtain face emotion feature data; testing the convolutional neural network model in a test set, and optimizing parameters of the convolutional neural network model; inputting to-be-recognized face image data into the optimized convolutional neural network model to obtain an emotion classification result; according to the method, the change of the user emotion can be recognized, the accuracy of the user emotion recognition can be improved, the detection accuracy is improved through the face micro-expression action detection of the convolutional neural network by utilizing a plurality of convolution and pooling</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115512422A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Convolutional neural network facial emotion recognition method and system based on attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20ZHIYONG&rft.date=2022-12-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115512422A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true