Low-cost physical sign monitoring method and system based on deep learning

The invention discloses a low-cost physical sign monitoring method and system based on deep learning. Comprising the following steps: shooting the activity of a monitored object by using an infrared camera to obtain an IRT image within a period of time; marking and pre-processing the IRT image frame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TAN MINYI, LI JINMING, HAN GUANYA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TAN MINYI
LI JINMING
HAN GUANYA
description The invention discloses a low-cost physical sign monitoring method and system based on deep learning. Comprising the following steps: shooting the activity of a monitored object by using an infrared camera to obtain an IRT image within a period of time; marking and pre-processing the IRT image frame to obtain a data set with two types of target bounding box marks of the head and the chest of the monitored object; training and verifying a target detection model by using the data set; positioning the head of a monitored object by using the target detection model, and estimating a temperature change trend; and using a time filtering algorithm and an optical flow algorithm for the obtained IRT image of the monitored object to estimate the respiratory rate. The low-resolution infrared camera is used for shooting the IRT image of the monitored object, the object detection model based on deep learning is lower in application cost, the comfort of the monitored object can be guaranteed, few constraint conditions are u
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115512178A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115512178A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115512178A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDlL9h_MDOkQpupZiEREn93ImZxtI7kIvIP17HfwAp7e8tbne5F070QJ5WjQ4jKBhZEjCocgceIREZRIPyB500UIJnqjkQRg8UYZIOPM3bszqhVFp-7Myu_786C41ZRlIMzpiKkN3t7Zp7N4eT-3hn_MBH_00_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Low-cost physical sign monitoring method and system based on deep learning</title><source>esp@cenet</source><creator>TAN MINYI ; LI JINMING ; HAN GUANYA</creator><creatorcontrib>TAN MINYI ; LI JINMING ; HAN GUANYA</creatorcontrib><description>The invention discloses a low-cost physical sign monitoring method and system based on deep learning. Comprising the following steps: shooting the activity of a monitored object by using an infrared camera to obtain an IRT image within a period of time; marking and pre-processing the IRT image frame to obtain a data set with two types of target bounding box marks of the head and the chest of the monitored object; training and verifying a target detection model by using the data set; positioning the head of a monitored object by using the target detection model, and estimating a temperature change trend; and using a time filtering algorithm and an optical flow algorithm for the obtained IRT image of the monitored object to estimate the respiratory rate. The low-resolution infrared camera is used for shooting the IRT image of the monitored object, the object detection model based on deep learning is lower in application cost, the comfort of the monitored object can be guaranteed, few constraint conditions are u</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115512178A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115512178A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TAN MINYI</creatorcontrib><creatorcontrib>LI JINMING</creatorcontrib><creatorcontrib>HAN GUANYA</creatorcontrib><title>Low-cost physical sign monitoring method and system based on deep learning</title><description>The invention discloses a low-cost physical sign monitoring method and system based on deep learning. Comprising the following steps: shooting the activity of a monitored object by using an infrared camera to obtain an IRT image within a period of time; marking and pre-processing the IRT image frame to obtain a data set with two types of target bounding box marks of the head and the chest of the monitored object; training and verifying a target detection model by using the data set; positioning the head of a monitored object by using the target detection model, and estimating a temperature change trend; and using a time filtering algorithm and an optical flow algorithm for the obtained IRT image of the monitored object to estimate the respiratory rate. The low-resolution infrared camera is used for shooting the IRT image of the monitored object, the object detection model based on deep learning is lower in application cost, the comfort of the monitored object can be guaranteed, few constraint conditions are u</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDlL9h_MDOkQpupZiEREn93ImZxtI7kIvIP17HfwAp7e8tbne5F070QJ5WjQ4jKBhZEjCocgceIREZRIPyB500UIJnqjkQRg8UYZIOPM3bszqhVFp-7Myu_786C41ZRlIMzpiKkN3t7Zp7N4eT-3hn_MBH_00_g</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>TAN MINYI</creator><creator>LI JINMING</creator><creator>HAN GUANYA</creator><scope>EVB</scope></search><sort><creationdate>20221223</creationdate><title>Low-cost physical sign monitoring method and system based on deep learning</title><author>TAN MINYI ; LI JINMING ; HAN GUANYA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115512178A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>TAN MINYI</creatorcontrib><creatorcontrib>LI JINMING</creatorcontrib><creatorcontrib>HAN GUANYA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TAN MINYI</au><au>LI JINMING</au><au>HAN GUANYA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Low-cost physical sign monitoring method and system based on deep learning</title><date>2022-12-23</date><risdate>2022</risdate><abstract>The invention discloses a low-cost physical sign monitoring method and system based on deep learning. Comprising the following steps: shooting the activity of a monitored object by using an infrared camera to obtain an IRT image within a period of time; marking and pre-processing the IRT image frame to obtain a data set with two types of target bounding box marks of the head and the chest of the monitored object; training and verifying a target detection model by using the data set; positioning the head of a monitored object by using the target detection model, and estimating a temperature change trend; and using a time filtering algorithm and an optical flow algorithm for the obtained IRT image of the monitored object to estimate the respiratory rate. The low-resolution infrared camera is used for shooting the IRT image of the monitored object, the object detection model based on deep learning is lower in application cost, the comfort of the monitored object can be guaranteed, few constraint conditions are u</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115512178A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Low-cost physical sign monitoring method and system based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TAN%20MINYI&rft.date=2022-12-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115512178A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true