Text matching method based on data enhancement and graph matching network

The invention discloses a text matching method based on data enhancement and a graph matching network, which introduces dependency syntactic analysis and establishes a dependency relationship between text semantic units. And focusing the model on the core semantic unit by using a self-attention mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU NING, ZHAN DAIYI, ZHANG SIQI, LIU JINSHUO, DENG JUAN, TANG HAOZHOU, WANG CHENYANG, LIU KAI, HUANG SHUO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU NING
ZHAN DAIYI
ZHANG SIQI
LIU JINSHUO
DENG JUAN
TANG HAOZHOU
WANG CHENYANG
LIU KAI
HUANG SHUO
description The invention discloses a text matching method based on data enhancement and a graph matching network, which introduces dependency syntactic analysis and establishes a dependency relationship between text semantic units. And focusing the model on the core semantic unit by using a self-attention mechanism. Through a graph matching network, connection is established between any words of two text segments, full interaction is carried out through an attention mechanism, semantic focuses are better grasped, and the similarity between the texts is learned. And realizing data enhancement of the question matching data set from word and sentence granularity. An entity replacement algorithm, a synonym replacement and random insertion algorithm, a word noise enhancement algorithm and a back translation algorithm are designed, so that the diversity of a data set is improved, and the problems of insufficient corpora and the like are solved. According to the method, dependency syntactic analysis and a graph matching networ
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115510841A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115510841A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115510841A3</originalsourceid><addsrcrecordid>eNrjZPAMSa0oUchNLEnOyMxLV8hNLcnIT1FISixOTVHIz1NISSxJVEjNy0jMS07NTc0rUUjMS1FIL0osyEDoyUstKc8vyuZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqUCV8c5-hoampoYGFiaGjsbEqAEAvn40aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Text matching method based on data enhancement and graph matching network</title><source>esp@cenet</source><creator>LIU NING ; ZHAN DAIYI ; ZHANG SIQI ; LIU JINSHUO ; DENG JUAN ; TANG HAOZHOU ; WANG CHENYANG ; LIU KAI ; HUANG SHUO</creator><creatorcontrib>LIU NING ; ZHAN DAIYI ; ZHANG SIQI ; LIU JINSHUO ; DENG JUAN ; TANG HAOZHOU ; WANG CHENYANG ; LIU KAI ; HUANG SHUO</creatorcontrib><description>The invention discloses a text matching method based on data enhancement and a graph matching network, which introduces dependency syntactic analysis and establishes a dependency relationship between text semantic units. And focusing the model on the core semantic unit by using a self-attention mechanism. Through a graph matching network, connection is established between any words of two text segments, full interaction is carried out through an attention mechanism, semantic focuses are better grasped, and the similarity between the texts is learned. And realizing data enhancement of the question matching data set from word and sentence granularity. An entity replacement algorithm, a synonym replacement and random insertion algorithm, a word noise enhancement algorithm and a back translation algorithm are designed, so that the diversity of a data set is improved, and the problems of insufficient corpora and the like are solved. According to the method, dependency syntactic analysis and a graph matching networ</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115510841A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115510841A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU NING</creatorcontrib><creatorcontrib>ZHAN DAIYI</creatorcontrib><creatorcontrib>ZHANG SIQI</creatorcontrib><creatorcontrib>LIU JINSHUO</creatorcontrib><creatorcontrib>DENG JUAN</creatorcontrib><creatorcontrib>TANG HAOZHOU</creatorcontrib><creatorcontrib>WANG CHENYANG</creatorcontrib><creatorcontrib>LIU KAI</creatorcontrib><creatorcontrib>HUANG SHUO</creatorcontrib><title>Text matching method based on data enhancement and graph matching network</title><description>The invention discloses a text matching method based on data enhancement and a graph matching network, which introduces dependency syntactic analysis and establishes a dependency relationship between text semantic units. And focusing the model on the core semantic unit by using a self-attention mechanism. Through a graph matching network, connection is established between any words of two text segments, full interaction is carried out through an attention mechanism, semantic focuses are better grasped, and the similarity between the texts is learned. And realizing data enhancement of the question matching data set from word and sentence granularity. An entity replacement algorithm, a synonym replacement and random insertion algorithm, a word noise enhancement algorithm and a back translation algorithm are designed, so that the diversity of a data set is improved, and the problems of insufficient corpora and the like are solved. According to the method, dependency syntactic analysis and a graph matching networ</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAMSa0oUchNLEnOyMxLV8hNLcnIT1FISixOTVHIz1NISSxJVEjNy0jMS07NTc0rUUjMS1FIL0osyEDoyUstKc8vyuZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqUCV8c5-hoampoYGFiaGjsbEqAEAvn40aw</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>LIU NING</creator><creator>ZHAN DAIYI</creator><creator>ZHANG SIQI</creator><creator>LIU JINSHUO</creator><creator>DENG JUAN</creator><creator>TANG HAOZHOU</creator><creator>WANG CHENYANG</creator><creator>LIU KAI</creator><creator>HUANG SHUO</creator><scope>EVB</scope></search><sort><creationdate>20221223</creationdate><title>Text matching method based on data enhancement and graph matching network</title><author>LIU NING ; ZHAN DAIYI ; ZHANG SIQI ; LIU JINSHUO ; DENG JUAN ; TANG HAOZHOU ; WANG CHENYANG ; LIU KAI ; HUANG SHUO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115510841A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU NING</creatorcontrib><creatorcontrib>ZHAN DAIYI</creatorcontrib><creatorcontrib>ZHANG SIQI</creatorcontrib><creatorcontrib>LIU JINSHUO</creatorcontrib><creatorcontrib>DENG JUAN</creatorcontrib><creatorcontrib>TANG HAOZHOU</creatorcontrib><creatorcontrib>WANG CHENYANG</creatorcontrib><creatorcontrib>LIU KAI</creatorcontrib><creatorcontrib>HUANG SHUO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU NING</au><au>ZHAN DAIYI</au><au>ZHANG SIQI</au><au>LIU JINSHUO</au><au>DENG JUAN</au><au>TANG HAOZHOU</au><au>WANG CHENYANG</au><au>LIU KAI</au><au>HUANG SHUO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Text matching method based on data enhancement and graph matching network</title><date>2022-12-23</date><risdate>2022</risdate><abstract>The invention discloses a text matching method based on data enhancement and a graph matching network, which introduces dependency syntactic analysis and establishes a dependency relationship between text semantic units. And focusing the model on the core semantic unit by using a self-attention mechanism. Through a graph matching network, connection is established between any words of two text segments, full interaction is carried out through an attention mechanism, semantic focuses are better grasped, and the similarity between the texts is learned. And realizing data enhancement of the question matching data set from word and sentence granularity. An entity replacement algorithm, a synonym replacement and random insertion algorithm, a word noise enhancement algorithm and a back translation algorithm are designed, so that the diversity of a data set is improved, and the problems of insufficient corpora and the like are solved. According to the method, dependency syntactic analysis and a graph matching networ</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115510841A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Text matching method based on data enhancement and graph matching network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20NING&rft.date=2022-12-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115510841A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true