Content-oriented animation video no-reference quality evaluation method

The invention discloses a content-oriented animation video no-reference quality evaluation method. The method comprises the following steps: firstly, establishing a CG animation video quality database, performing feature vector extraction and labeling on video samples, and dividing the samples in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG DONGZI, JIANG WEI, ZHOU MINGLIANG, XIAN WEIZHI, YANG FENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG DONGZI
JIANG WEI
ZHOU MINGLIANG
XIAN WEIZHI
YANG FENG
description The invention discloses a content-oriented animation video no-reference quality evaluation method. The method comprises the following steps: firstly, establishing a CG animation video quality database, performing feature vector extraction and labeling on video samples, and dividing the samples in the database into two parts, namely a training set and a test set; secondly, training a video content classifier based on the convolutional neural network by using the training set, and during training, inputting a frame image of the video and outputting a content category of the video; then, each type of videos in the training set is used for training a corresponding quality scoring model based on a BP neural network, in the training process, feature vectors of the videos are input, and quality scores of the videos are output; and finally, implementing the content-oriented CG animation video no-reference quality evaluation method by applying the trained convolutional neural network and BP neural network, and carryin
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115510271A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115510271A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115510271A3</originalsourceid><addsrcrecordid>eNrjZHB3zs8rSc0r0c0vygRSqSkKiXmZuYklmfl5CmWZKan5Cnn5ukWpaalFqXnJqQqFpYk5mSWVCqlliTmlEFW5qSUZ-Sk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0NTU0MDI3NDRmBg1AL0xNJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Content-oriented animation video no-reference quality evaluation method</title><source>esp@cenet</source><creator>WANG DONGZI ; JIANG WEI ; ZHOU MINGLIANG ; XIAN WEIZHI ; YANG FENG</creator><creatorcontrib>WANG DONGZI ; JIANG WEI ; ZHOU MINGLIANG ; XIAN WEIZHI ; YANG FENG</creatorcontrib><description>The invention discloses a content-oriented animation video no-reference quality evaluation method. The method comprises the following steps: firstly, establishing a CG animation video quality database, performing feature vector extraction and labeling on video samples, and dividing the samples in the database into two parts, namely a training set and a test set; secondly, training a video content classifier based on the convolutional neural network by using the training set, and during training, inputting a frame image of the video and outputting a content category of the video; then, each type of videos in the training set is used for training a corresponding quality scoring model based on a BP neural network, in the training process, feature vectors of the videos are input, and quality scores of the videos are output; and finally, implementing the content-oriented CG animation video no-reference quality evaluation method by applying the trained convolutional neural network and BP neural network, and carryin</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115510271A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221223&amp;DB=EPODOC&amp;CC=CN&amp;NR=115510271A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG DONGZI</creatorcontrib><creatorcontrib>JIANG WEI</creatorcontrib><creatorcontrib>ZHOU MINGLIANG</creatorcontrib><creatorcontrib>XIAN WEIZHI</creatorcontrib><creatorcontrib>YANG FENG</creatorcontrib><title>Content-oriented animation video no-reference quality evaluation method</title><description>The invention discloses a content-oriented animation video no-reference quality evaluation method. The method comprises the following steps: firstly, establishing a CG animation video quality database, performing feature vector extraction and labeling on video samples, and dividing the samples in the database into two parts, namely a training set and a test set; secondly, training a video content classifier based on the convolutional neural network by using the training set, and during training, inputting a frame image of the video and outputting a content category of the video; then, each type of videos in the training set is used for training a corresponding quality scoring model based on a BP neural network, in the training process, feature vectors of the videos are input, and quality scores of the videos are output; and finally, implementing the content-oriented CG animation video no-reference quality evaluation method by applying the trained convolutional neural network and BP neural network, and carryin</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB3zs8rSc0r0c0vygRSqSkKiXmZuYklmfl5CmWZKan5Cnn5ukWpaalFqXnJqQqFpYk5mSWVCqlliTmlEFW5qSUZ-Sk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0NTU0MDI3NDRmBg1AL0xNJA</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>WANG DONGZI</creator><creator>JIANG WEI</creator><creator>ZHOU MINGLIANG</creator><creator>XIAN WEIZHI</creator><creator>YANG FENG</creator><scope>EVB</scope></search><sort><creationdate>20221223</creationdate><title>Content-oriented animation video no-reference quality evaluation method</title><author>WANG DONGZI ; JIANG WEI ; ZHOU MINGLIANG ; XIAN WEIZHI ; YANG FENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115510271A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG DONGZI</creatorcontrib><creatorcontrib>JIANG WEI</creatorcontrib><creatorcontrib>ZHOU MINGLIANG</creatorcontrib><creatorcontrib>XIAN WEIZHI</creatorcontrib><creatorcontrib>YANG FENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG DONGZI</au><au>JIANG WEI</au><au>ZHOU MINGLIANG</au><au>XIAN WEIZHI</au><au>YANG FENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Content-oriented animation video no-reference quality evaluation method</title><date>2022-12-23</date><risdate>2022</risdate><abstract>The invention discloses a content-oriented animation video no-reference quality evaluation method. The method comprises the following steps: firstly, establishing a CG animation video quality database, performing feature vector extraction and labeling on video samples, and dividing the samples in the database into two parts, namely a training set and a test set; secondly, training a video content classifier based on the convolutional neural network by using the training set, and during training, inputting a frame image of the video and outputting a content category of the video; then, each type of videos in the training set is used for training a corresponding quality scoring model based on a BP neural network, in the training process, feature vectors of the videos are input, and quality scores of the videos are output; and finally, implementing the content-oriented CG animation video no-reference quality evaluation method by applying the trained convolutional neural network and BP neural network, and carryin</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115510271A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Content-oriented animation video no-reference quality evaluation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20DONGZI&rft.date=2022-12-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115510271A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true