Method, device, equipment and medium for detecting maturity and spatial position of tomato
The invention discloses a tomato maturity and spatial position detection method and device, electronic equipment and a storage medium, and the method comprises the steps: obtaining a tomato image data set, marking the position and maturity type of a tomato in an image in the data set, and training a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG HONG XIAO KEHUI SU ZHANGSHUN YANG XIAODAN |
description | The invention discloses a tomato maturity and spatial position detection method and device, electronic equipment and a storage medium, and the method comprises the steps: obtaining a tomato image data set, marking the position and maturity type of a tomato in an image in the data set, and training a maturity detection network model through the tomato image data set and the marking; the maturity detection network model is improved based on a deep learning YOLOv4-tiny network model, Backbone is CSPdarknet53-tiny, and attention mechanisms are respectively added in the last two layers of output and an FPN (Fabry-Perot Network) structure of the Backbone; constructing a trained maturity detection network model and a detection model for obtaining the three-dimensional space position of the tomato through a computer vision technology; and inputting the image of the tomato to be detected into the detection model, and outputting the maturity and the spatial position of the tomato in real time. According to the method, |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115497090A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115497090A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115497090A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAQgOEsDqK-w7lXaFGRjlIUF52cXEpILnrQ5GJzEXx7g_gATv_y_VN1O6M82FZg8UUGK8BnpugxCOhgwaOl7MHxWICgEQp38FrySPL-ihS1kB4gciIhDsAOhAvhuZo4PSRc_DpTy-Ph2p1WGLnH8hkMKH13aZrtpt3Vbb1f_2M-BIY6-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method, device, equipment and medium for detecting maturity and spatial position of tomato</title><source>esp@cenet</source><creator>YANG HONG ; XIAO KEHUI ; SU ZHANGSHUN ; YANG XIAODAN</creator><creatorcontrib>YANG HONG ; XIAO KEHUI ; SU ZHANGSHUN ; YANG XIAODAN</creatorcontrib><description>The invention discloses a tomato maturity and spatial position detection method and device, electronic equipment and a storage medium, and the method comprises the steps: obtaining a tomato image data set, marking the position and maturity type of a tomato in an image in the data set, and training a maturity detection network model through the tomato image data set and the marking; the maturity detection network model is improved based on a deep learning YOLOv4-tiny network model, Backbone is CSPdarknet53-tiny, and attention mechanisms are respectively added in the last two layers of output and an FPN (Fabry-Perot Network) structure of the Backbone; constructing a trained maturity detection network model and a detection model for obtaining the three-dimensional space position of the tomato through a computer vision technology; and inputting the image of the tomato to be detected into the detection model, and outputting the maturity and the spatial position of the tomato in real time. According to the method,</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221220&DB=EPODOC&CC=CN&NR=115497090A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221220&DB=EPODOC&CC=CN&NR=115497090A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG HONG</creatorcontrib><creatorcontrib>XIAO KEHUI</creatorcontrib><creatorcontrib>SU ZHANGSHUN</creatorcontrib><creatorcontrib>YANG XIAODAN</creatorcontrib><title>Method, device, equipment and medium for detecting maturity and spatial position of tomato</title><description>The invention discloses a tomato maturity and spatial position detection method and device, electronic equipment and a storage medium, and the method comprises the steps: obtaining a tomato image data set, marking the position and maturity type of a tomato in an image in the data set, and training a maturity detection network model through the tomato image data set and the marking; the maturity detection network model is improved based on a deep learning YOLOv4-tiny network model, Backbone is CSPdarknet53-tiny, and attention mechanisms are respectively added in the last two layers of output and an FPN (Fabry-Perot Network) structure of the Backbone; constructing a trained maturity detection network model and a detection model for obtaining the three-dimensional space position of the tomato through a computer vision technology; and inputting the image of the tomato to be detected into the detection model, and outputting the maturity and the spatial position of the tomato in real time. According to the method,</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAQgOEsDqK-w7lXaFGRjlIUF52cXEpILnrQ5GJzEXx7g_gATv_y_VN1O6M82FZg8UUGK8BnpugxCOhgwaOl7MHxWICgEQp38FrySPL-ihS1kB4gciIhDsAOhAvhuZo4PSRc_DpTy-Ph2p1WGLnH8hkMKH13aZrtpt3Vbb1f_2M-BIY6-g</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>YANG HONG</creator><creator>XIAO KEHUI</creator><creator>SU ZHANGSHUN</creator><creator>YANG XIAODAN</creator><scope>EVB</scope></search><sort><creationdate>20221220</creationdate><title>Method, device, equipment and medium for detecting maturity and spatial position of tomato</title><author>YANG HONG ; XIAO KEHUI ; SU ZHANGSHUN ; YANG XIAODAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115497090A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG HONG</creatorcontrib><creatorcontrib>XIAO KEHUI</creatorcontrib><creatorcontrib>SU ZHANGSHUN</creatorcontrib><creatorcontrib>YANG XIAODAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG HONG</au><au>XIAO KEHUI</au><au>SU ZHANGSHUN</au><au>YANG XIAODAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method, device, equipment and medium for detecting maturity and spatial position of tomato</title><date>2022-12-20</date><risdate>2022</risdate><abstract>The invention discloses a tomato maturity and spatial position detection method and device, electronic equipment and a storage medium, and the method comprises the steps: obtaining a tomato image data set, marking the position and maturity type of a tomato in an image in the data set, and training a maturity detection network model through the tomato image data set and the marking; the maturity detection network model is improved based on a deep learning YOLOv4-tiny network model, Backbone is CSPdarknet53-tiny, and attention mechanisms are respectively added in the last two layers of output and an FPN (Fabry-Perot Network) structure of the Backbone; constructing a trained maturity detection network model and a detection model for obtaining the three-dimensional space position of the tomato through a computer vision technology; and inputting the image of the tomato to be detected into the detection model, and outputting the maturity and the spatial position of the tomato in real time. According to the method,</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115497090A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Method, device, equipment and medium for detecting maturity and spatial position of tomato |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20HONG&rft.date=2022-12-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115497090A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |