Geographic information identification method and system based on deep learning
The invention provides a geographic information identification method and system based on deep learning, and the method comprises the steps: S1, carrying out the region division of an original landform image based on an edge line in the original landform image, and obtaining a plurality of landform...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG SHIXING QIAO LI YAN ZHIZHOU YANG JIAOLONG SONG YONGHENG ZHANG CHANGSHUAI |
description | The invention provides a geographic information identification method and system based on deep learning, and the method comprises the steps: S1, carrying out the region division of an original landform image based on an edge line in the original landform image, and obtaining a plurality of landform image regions; s2, classifying all landform image regions to obtain a to-be-recognized region set corresponding to each landform category; s3, based on a deep convolutional network corresponding to the corresponding landform category, performing feature extraction on the to-be-identified region to obtain a corresponding accumulated image feature; s4, performing enhancement processing on the original landform image based on the accumulated image features to obtain an enhanced landform image; s5, identifying effective geographic information in the enhanced landform image; the method and the device are used for technically combining image deep learning and geographic information identification, realizing high-precisio |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115497010A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115497010A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115497010A3</originalsourceid><addsrcrecordid>eNqNis0KwjAQBnvxIOo7rA8gNKhIj1L8OfXkvazJ13ah2YQkF99eQR_A0zDMLKvuhjAmjpNYEh1C8lwkKImDFhnEftWjTMERq6P8ygWenpzh6JMcEGkGJxUd19Vi4Dlj8-Oq2l4vj_a-Qww9cmQLRenbzpjjoTnVpj7v_3neUb822Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Geographic information identification method and system based on deep learning</title><source>esp@cenet</source><creator>YANG SHIXING ; QIAO LI ; YAN ZHIZHOU ; YANG JIAOLONG ; SONG YONGHENG ; ZHANG CHANGSHUAI</creator><creatorcontrib>YANG SHIXING ; QIAO LI ; YAN ZHIZHOU ; YANG JIAOLONG ; SONG YONGHENG ; ZHANG CHANGSHUAI</creatorcontrib><description>The invention provides a geographic information identification method and system based on deep learning, and the method comprises the steps: S1, carrying out the region division of an original landform image based on an edge line in the original landform image, and obtaining a plurality of landform image regions; s2, classifying all landform image regions to obtain a to-be-recognized region set corresponding to each landform category; s3, based on a deep convolutional network corresponding to the corresponding landform category, performing feature extraction on the to-be-identified region to obtain a corresponding accumulated image feature; s4, performing enhancement processing on the original landform image based on the accumulated image features to obtain an enhanced landform image; s5, identifying effective geographic information in the enhanced landform image; the method and the device are used for technically combining image deep learning and geographic information identification, realizing high-precisio</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221220&DB=EPODOC&CC=CN&NR=115497010A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221220&DB=EPODOC&CC=CN&NR=115497010A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG SHIXING</creatorcontrib><creatorcontrib>QIAO LI</creatorcontrib><creatorcontrib>YAN ZHIZHOU</creatorcontrib><creatorcontrib>YANG JIAOLONG</creatorcontrib><creatorcontrib>SONG YONGHENG</creatorcontrib><creatorcontrib>ZHANG CHANGSHUAI</creatorcontrib><title>Geographic information identification method and system based on deep learning</title><description>The invention provides a geographic information identification method and system based on deep learning, and the method comprises the steps: S1, carrying out the region division of an original landform image based on an edge line in the original landform image, and obtaining a plurality of landform image regions; s2, classifying all landform image regions to obtain a to-be-recognized region set corresponding to each landform category; s3, based on a deep convolutional network corresponding to the corresponding landform category, performing feature extraction on the to-be-identified region to obtain a corresponding accumulated image feature; s4, performing enhancement processing on the original landform image based on the accumulated image features to obtain an enhanced landform image; s5, identifying effective geographic information in the enhanced landform image; the method and the device are used for technically combining image deep learning and geographic information identification, realizing high-precisio</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNis0KwjAQBnvxIOo7rA8gNKhIj1L8OfXkvazJ13ah2YQkF99eQR_A0zDMLKvuhjAmjpNYEh1C8lwkKImDFhnEftWjTMERq6P8ygWenpzh6JMcEGkGJxUd19Vi4Dlj8-Oq2l4vj_a-Qww9cmQLRenbzpjjoTnVpj7v_3neUb822Q</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>YANG SHIXING</creator><creator>QIAO LI</creator><creator>YAN ZHIZHOU</creator><creator>YANG JIAOLONG</creator><creator>SONG YONGHENG</creator><creator>ZHANG CHANGSHUAI</creator><scope>EVB</scope></search><sort><creationdate>20221220</creationdate><title>Geographic information identification method and system based on deep learning</title><author>YANG SHIXING ; QIAO LI ; YAN ZHIZHOU ; YANG JIAOLONG ; SONG YONGHENG ; ZHANG CHANGSHUAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115497010A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG SHIXING</creatorcontrib><creatorcontrib>QIAO LI</creatorcontrib><creatorcontrib>YAN ZHIZHOU</creatorcontrib><creatorcontrib>YANG JIAOLONG</creatorcontrib><creatorcontrib>SONG YONGHENG</creatorcontrib><creatorcontrib>ZHANG CHANGSHUAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG SHIXING</au><au>QIAO LI</au><au>YAN ZHIZHOU</au><au>YANG JIAOLONG</au><au>SONG YONGHENG</au><au>ZHANG CHANGSHUAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Geographic information identification method and system based on deep learning</title><date>2022-12-20</date><risdate>2022</risdate><abstract>The invention provides a geographic information identification method and system based on deep learning, and the method comprises the steps: S1, carrying out the region division of an original landform image based on an edge line in the original landform image, and obtaining a plurality of landform image regions; s2, classifying all landform image regions to obtain a to-be-recognized region set corresponding to each landform category; s3, based on a deep convolutional network corresponding to the corresponding landform category, performing feature extraction on the to-be-identified region to obtain a corresponding accumulated image feature; s4, performing enhancement processing on the original landform image based on the accumulated image features to obtain an enhanced landform image; s5, identifying effective geographic information in the enhanced landform image; the method and the device are used for technically combining image deep learning and geographic information identification, realizing high-precisio</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115497010A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING PHYSICS |
title | Geographic information identification method and system based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20SHIXING&rft.date=2022-12-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115497010A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |