Video super-resolution reconstruction method based on D3D convolution intra-group fusion network

The invention discloses a video super-resolution reconstruction method based on a D3D convolution intra-group fusion network. The method comprises the following steps: acquiring a low-resolution video sequence to be reconstructed; inputting the low-resolution video sequence to be reconstructed into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JING RUYUN, CHEN XIAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JING RUYUN
CHEN XIAO
description The invention discloses a video super-resolution reconstruction method based on a D3D convolution intra-group fusion network. The method comprises the following steps: acquiring a low-resolution video sequence to be reconstructed; inputting the low-resolution video sequence to be reconstructed into a tested and trained video super-resolution reconstruction network model; outputting the model to obtain a video super-resolution reconstruction result, namely a high-resolution video sequence; wherein the video super-resolution reconstruction network model comprises a time grouping module, a C3D shallow feature extraction module, a D3D convolution intra-group fusion module, an inter-group attention mechanism module and a reconstruction module. According to the method, the utilization rate of the video frame is improved, the offset vector obtained from the current input feature map can be learned, time and space information can be integrated, and more excellent reconstruction performance is obtained while the time
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115496663A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115496663A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115496663A3</originalsourceid><addsrcrecordid>eNqNysEOATEUheFuLATvUA_QxaQ0sZQZYmUltqM6d2iM3ubeltdXwt7q5D_5xuJ09B2g5ByBFAHjkJPHIAkcBk6U3SfvkK7YybNl6GTpRjeygMeP-5DIqgthjrLP_L4CpCfSbSpGvR0YZt-diPl2c6h3CiK2wNE6KLKt91W1XKyMMXqt_zEvOXQ-MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Video super-resolution reconstruction method based on D3D convolution intra-group fusion network</title><source>esp@cenet</source><creator>JING RUYUN ; CHEN XIAO</creator><creatorcontrib>JING RUYUN ; CHEN XIAO</creatorcontrib><description>The invention discloses a video super-resolution reconstruction method based on a D3D convolution intra-group fusion network. The method comprises the following steps: acquiring a low-resolution video sequence to be reconstructed; inputting the low-resolution video sequence to be reconstructed into a tested and trained video super-resolution reconstruction network model; outputting the model to obtain a video super-resolution reconstruction result, namely a high-resolution video sequence; wherein the video super-resolution reconstruction network model comprises a time grouping module, a C3D shallow feature extraction module, a D3D convolution intra-group fusion module, an inter-group attention mechanism module and a reconstruction module. According to the method, the utilization rate of the video frame is improved, the offset vector obtained from the current input feature map can be learned, time and space information can be integrated, and more excellent reconstruction performance is obtained while the time</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221220&amp;DB=EPODOC&amp;CC=CN&amp;NR=115496663A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221220&amp;DB=EPODOC&amp;CC=CN&amp;NR=115496663A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JING RUYUN</creatorcontrib><creatorcontrib>CHEN XIAO</creatorcontrib><title>Video super-resolution reconstruction method based on D3D convolution intra-group fusion network</title><description>The invention discloses a video super-resolution reconstruction method based on a D3D convolution intra-group fusion network. The method comprises the following steps: acquiring a low-resolution video sequence to be reconstructed; inputting the low-resolution video sequence to be reconstructed into a tested and trained video super-resolution reconstruction network model; outputting the model to obtain a video super-resolution reconstruction result, namely a high-resolution video sequence; wherein the video super-resolution reconstruction network model comprises a time grouping module, a C3D shallow feature extraction module, a D3D convolution intra-group fusion module, an inter-group attention mechanism module and a reconstruction module. According to the method, the utilization rate of the video frame is improved, the offset vector obtained from the current input feature map can be learned, time and space information can be integrated, and more excellent reconstruction performance is obtained while the time</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNysEOATEUheFuLATvUA_QxaQ0sZQZYmUltqM6d2iM3ubeltdXwt7q5D_5xuJ09B2g5ByBFAHjkJPHIAkcBk6U3SfvkK7YybNl6GTpRjeygMeP-5DIqgthjrLP_L4CpCfSbSpGvR0YZt-diPl2c6h3CiK2wNE6KLKt91W1XKyMMXqt_zEvOXQ-MA</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>JING RUYUN</creator><creator>CHEN XIAO</creator><scope>EVB</scope></search><sort><creationdate>20221220</creationdate><title>Video super-resolution reconstruction method based on D3D convolution intra-group fusion network</title><author>JING RUYUN ; CHEN XIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115496663A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JING RUYUN</creatorcontrib><creatorcontrib>CHEN XIAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JING RUYUN</au><au>CHEN XIAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Video super-resolution reconstruction method based on D3D convolution intra-group fusion network</title><date>2022-12-20</date><risdate>2022</risdate><abstract>The invention discloses a video super-resolution reconstruction method based on a D3D convolution intra-group fusion network. The method comprises the following steps: acquiring a low-resolution video sequence to be reconstructed; inputting the low-resolution video sequence to be reconstructed into a tested and trained video super-resolution reconstruction network model; outputting the model to obtain a video super-resolution reconstruction result, namely a high-resolution video sequence; wherein the video super-resolution reconstruction network model comprises a time grouping module, a C3D shallow feature extraction module, a D3D convolution intra-group fusion module, an inter-group attention mechanism module and a reconstruction module. According to the method, the utilization rate of the video frame is improved, the offset vector obtained from the current input feature map can be learned, time and space information can be integrated, and more excellent reconstruction performance is obtained while the time</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115496663A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Video super-resolution reconstruction method based on D3D convolution intra-group fusion network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JING%20RUYUN&rft.date=2022-12-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115496663A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true