Multivariable prediction method fusing population and electrical load

The invention discloses a multivariable prediction method fusing population and electrical load. The multivariable prediction method comprises the following steps: S1, obtaining population flow data, day granularity electric quantity prediction data and meteorological data; s2, carrying out feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WEN MING, TANG JUN, TU ZHAOYING, XU BINKUN, LI WENYING, LIAO JING, TANG JINGJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WEN MING
TANG JUN
TU ZHAOYING
XU BINKUN
LI WENYING
LIAO JING
TANG JINGJUN
description The invention discloses a multivariable prediction method fusing population and electrical load. The multivariable prediction method comprises the following steps: S1, obtaining population flow data, day granularity electric quantity prediction data and meteorological data; s2, carrying out feature division on all data, and constructing a data set available for the prediction model; s3, performing data division based on the prediction period, and selecting a training set, a test set and a verification set; s4, based on the population flow data set, the input features and the output features, modeling is performed through a tree model, a Prophet model and a multiple linear regression model, a population flow prediction result is obtained, and polarity linear fusion is performed on the population flow prediction result; and S5, based on the electricity consumption data set, the population flow prediction result and the meteorological data, performing modeling through a tree model, a Prophet model and a multiple
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115481783A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115481783A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115481783A3</originalsourceid><addsrcrecordid>eNrjZHD1Lc0pySxLLMpMTMpJVSgoSk3JTC7JzM9TyE0tychPUUgrLc7MS1coyC8ozUkESyTmpSik5qQmlxRlJifmKOTkJ6bwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ1MTC0NzC2NHY2LUAABNlTPd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multivariable prediction method fusing population and electrical load</title><source>esp@cenet</source><creator>WEN MING ; TANG JUN ; TU ZHAOYING ; XU BINKUN ; LI WENYING ; LIAO JING ; TANG JINGJUN</creator><creatorcontrib>WEN MING ; TANG JUN ; TU ZHAOYING ; XU BINKUN ; LI WENYING ; LIAO JING ; TANG JINGJUN</creatorcontrib><description>The invention discloses a multivariable prediction method fusing population and electrical load. The multivariable prediction method comprises the following steps: S1, obtaining population flow data, day granularity electric quantity prediction data and meteorological data; s2, carrying out feature division on all data, and constructing a data set available for the prediction model; s3, performing data division based on the prediction period, and selecting a training set, a test set and a verification set; s4, based on the population flow data set, the input features and the output features, modeling is performed through a tree model, a Prophet model and a multiple linear regression model, a population flow prediction result is obtained, and polarity linear fusion is performed on the population flow prediction result; and S5, based on the electricity consumption data set, the population flow prediction result and the meteorological data, performing modeling through a tree model, a Prophet model and a multiple</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221216&amp;DB=EPODOC&amp;CC=CN&amp;NR=115481783A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221216&amp;DB=EPODOC&amp;CC=CN&amp;NR=115481783A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WEN MING</creatorcontrib><creatorcontrib>TANG JUN</creatorcontrib><creatorcontrib>TU ZHAOYING</creatorcontrib><creatorcontrib>XU BINKUN</creatorcontrib><creatorcontrib>LI WENYING</creatorcontrib><creatorcontrib>LIAO JING</creatorcontrib><creatorcontrib>TANG JINGJUN</creatorcontrib><title>Multivariable prediction method fusing population and electrical load</title><description>The invention discloses a multivariable prediction method fusing population and electrical load. The multivariable prediction method comprises the following steps: S1, obtaining population flow data, day granularity electric quantity prediction data and meteorological data; s2, carrying out feature division on all data, and constructing a data set available for the prediction model; s3, performing data division based on the prediction period, and selecting a training set, a test set and a verification set; s4, based on the population flow data set, the input features and the output features, modeling is performed through a tree model, a Prophet model and a multiple linear regression model, a population flow prediction result is obtained, and polarity linear fusion is performed on the population flow prediction result; and S5, based on the electricity consumption data set, the population flow prediction result and the meteorological data, performing modeling through a tree model, a Prophet model and a multiple</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD1Lc0pySxLLMpMTMpJVSgoSk3JTC7JzM9TyE0tychPUUgrLc7MS1coyC8ozUkESyTmpSik5qQmlxRlJifmKOTkJ6bwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ1MTC0NzC2NHY2LUAABNlTPd</recordid><startdate>20221216</startdate><enddate>20221216</enddate><creator>WEN MING</creator><creator>TANG JUN</creator><creator>TU ZHAOYING</creator><creator>XU BINKUN</creator><creator>LI WENYING</creator><creator>LIAO JING</creator><creator>TANG JINGJUN</creator><scope>EVB</scope></search><sort><creationdate>20221216</creationdate><title>Multivariable prediction method fusing population and electrical load</title><author>WEN MING ; TANG JUN ; TU ZHAOYING ; XU BINKUN ; LI WENYING ; LIAO JING ; TANG JINGJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115481783A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WEN MING</creatorcontrib><creatorcontrib>TANG JUN</creatorcontrib><creatorcontrib>TU ZHAOYING</creatorcontrib><creatorcontrib>XU BINKUN</creatorcontrib><creatorcontrib>LI WENYING</creatorcontrib><creatorcontrib>LIAO JING</creatorcontrib><creatorcontrib>TANG JINGJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEN MING</au><au>TANG JUN</au><au>TU ZHAOYING</au><au>XU BINKUN</au><au>LI WENYING</au><au>LIAO JING</au><au>TANG JINGJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multivariable prediction method fusing population and electrical load</title><date>2022-12-16</date><risdate>2022</risdate><abstract>The invention discloses a multivariable prediction method fusing population and electrical load. The multivariable prediction method comprises the following steps: S1, obtaining population flow data, day granularity electric quantity prediction data and meteorological data; s2, carrying out feature division on all data, and constructing a data set available for the prediction model; s3, performing data division based on the prediction period, and selecting a training set, a test set and a verification set; s4, based on the population flow data set, the input features and the output features, modeling is performed through a tree model, a Prophet model and a multiple linear regression model, a population flow prediction result is obtained, and polarity linear fusion is performed on the population flow prediction result; and S5, based on the electricity consumption data set, the population flow prediction result and the meteorological data, performing modeling through a tree model, a Prophet model and a multiple</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115481783A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Multivariable prediction method fusing population and electrical load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WEN%20MING&rft.date=2022-12-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115481783A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true