Method for constructing lung cancer risk prediction model based on peripheral blood markers
The invention discloses a method for constructing a lung cancer risk prediction model based on peripheral blood markers. The method comprises the following steps: 1) collecting leukocyte, neutrophil absolute value, hemoglobin, lymphocyte absolute value and platelet count in peripheral blood routine...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LU SONGMEI XU LINQUAN |
description | The invention discloses a method for constructing a lung cancer risk prediction model based on peripheral blood markers. The method comprises the following steps: 1) collecting leukocyte, neutrophil absolute value, hemoglobin, lymphocyte absolute value and platelet count in peripheral blood routine examination, albumin, prealbumin, globulin and alkaline phosphatase in liver function, sodium, chlorine and iron in electrolyte, fibrinogen and D-dimer in coagulogram, CA125, CEA and cyfra21-1 in tumor markers, and CA125, CEA and cyfra21-1 in tumor markers; 27 indexes, namely, SCC, NSE, ProGRP, CD3 +, CD4 +, CD8 +, B and NK lymphocytes in the immune function, total lymphocyte count and age, are included; and 2) modeling peripheral blood test indexes of the lung cancer patient and the lung benign disease patient (G1) based on machine learning. The model has very high sensitivity and specificity; the model integrates an inflammation index, a nutrition index, a blood coagulation index, a tumor marker and an immune fun |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115472292A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115472292A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115472292A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAUQ7swIOAOnwMwNIAQI6pALDCxMVQhcduoaX70k96fDByAxZafLS-r9wN5YEsdCxkOKctssgs9-bmI0cFASFwaKQqsKx0HmtjC00cnWCoxQlwcILowz-Vs0jJC0rpadNonbH6-qra366u57xC5RYraICC3zbOuj4eTUmd12f-z-QKTvDu5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for constructing lung cancer risk prediction model based on peripheral blood markers</title><source>esp@cenet</source><creator>LU SONGMEI ; XU LINQUAN</creator><creatorcontrib>LU SONGMEI ; XU LINQUAN</creatorcontrib><description>The invention discloses a method for constructing a lung cancer risk prediction model based on peripheral blood markers. The method comprises the following steps: 1) collecting leukocyte, neutrophil absolute value, hemoglobin, lymphocyte absolute value and platelet count in peripheral blood routine examination, albumin, prealbumin, globulin and alkaline phosphatase in liver function, sodium, chlorine and iron in electrolyte, fibrinogen and D-dimer in coagulogram, CA125, CEA and cyfra21-1 in tumor markers, and CA125, CEA and cyfra21-1 in tumor markers; 27 indexes, namely, SCC, NSE, ProGRP, CD3 +, CD4 +, CD8 +, B and NK lymphocytes in the immune function, total lymphocyte count and age, are included; and 2) modeling peripheral blood test indexes of the lung cancer patient and the lung benign disease patient (G1) based on machine learning. The model has very high sensitivity and specificity; the model integrates an inflammation index, a nutrition index, a blood coagulation index, a tumor marker and an immune fun</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221213&DB=EPODOC&CC=CN&NR=115472292A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221213&DB=EPODOC&CC=CN&NR=115472292A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU SONGMEI</creatorcontrib><creatorcontrib>XU LINQUAN</creatorcontrib><title>Method for constructing lung cancer risk prediction model based on peripheral blood markers</title><description>The invention discloses a method for constructing a lung cancer risk prediction model based on peripheral blood markers. The method comprises the following steps: 1) collecting leukocyte, neutrophil absolute value, hemoglobin, lymphocyte absolute value and platelet count in peripheral blood routine examination, albumin, prealbumin, globulin and alkaline phosphatase in liver function, sodium, chlorine and iron in electrolyte, fibrinogen and D-dimer in coagulogram, CA125, CEA and cyfra21-1 in tumor markers, and CA125, CEA and cyfra21-1 in tumor markers; 27 indexes, namely, SCC, NSE, ProGRP, CD3 +, CD4 +, CD8 +, B and NK lymphocytes in the immune function, total lymphocyte count and age, are included; and 2) modeling peripheral blood test indexes of the lung cancer patient and the lung benign disease patient (G1) based on machine learning. The model has very high sensitivity and specificity; the model integrates an inflammation index, a nutrition index, a blood coagulation index, a tumor marker and an immune fun</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAUQ7swIOAOnwMwNIAQI6pALDCxMVQhcduoaX70k96fDByAxZafLS-r9wN5YEsdCxkOKctssgs9-bmI0cFASFwaKQqsKx0HmtjC00cnWCoxQlwcILowz-Vs0jJC0rpadNonbH6-qra366u57xC5RYraICC3zbOuj4eTUmd12f-z-QKTvDu5</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>LU SONGMEI</creator><creator>XU LINQUAN</creator><scope>EVB</scope></search><sort><creationdate>20221213</creationdate><title>Method for constructing lung cancer risk prediction model based on peripheral blood markers</title><author>LU SONGMEI ; XU LINQUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115472292A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU SONGMEI</creatorcontrib><creatorcontrib>XU LINQUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU SONGMEI</au><au>XU LINQUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for constructing lung cancer risk prediction model based on peripheral blood markers</title><date>2022-12-13</date><risdate>2022</risdate><abstract>The invention discloses a method for constructing a lung cancer risk prediction model based on peripheral blood markers. The method comprises the following steps: 1) collecting leukocyte, neutrophil absolute value, hemoglobin, lymphocyte absolute value and platelet count in peripheral blood routine examination, albumin, prealbumin, globulin and alkaline phosphatase in liver function, sodium, chlorine and iron in electrolyte, fibrinogen and D-dimer in coagulogram, CA125, CEA and cyfra21-1 in tumor markers, and CA125, CEA and cyfra21-1 in tumor markers; 27 indexes, namely, SCC, NSE, ProGRP, CD3 +, CD4 +, CD8 +, B and NK lymphocytes in the immune function, total lymphocyte count and age, are included; and 2) modeling peripheral blood test indexes of the lung cancer patient and the lung benign disease patient (G1) based on machine learning. The model has very high sensitivity and specificity; the model integrates an inflammation index, a nutrition index, a blood coagulation index, a tumor marker and an immune fun</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115472292A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Method for constructing lung cancer risk prediction model based on peripheral blood markers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20SONGMEI&rft.date=2022-12-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115472292A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |