Power transmission line dynamic thermal capacity limit prediction method capable of tracking time-varying characteristics of environmental factors

The invention discloses a power transmission line dynamic thermal capacity limit prediction method capable of tracking environmental factor time-varying characteristics, and belongs to the field of power transmission network line operation state evaluation in a power system. Firstly, main influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIN TIAN, DOU YANAN, HU SHUBO, KO JUNG-NAM, LU XUELI, ZHU BAOHANG, SUN HUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIN TIAN
DOU YANAN
HU SHUBO
KO JUNG-NAM
LU XUELI
ZHU BAOHANG
SUN HUI
description The invention discloses a power transmission line dynamic thermal capacity limit prediction method capable of tracking environmental factor time-varying characteristics, and belongs to the field of power transmission network line operation state evaluation in a power system. Firstly, main influence factors of the DTR are determined; and establishing a DTR prediction model considering the influence degree time-varying characteristics of the environmental factors. Secondly, obtaining DTR time sequence prediction model training data, and training a DTR time sequence prediction model; and finally, performing DTR prediction by using the DTR time sequence prediction model, and finally realizing rolling prediction. According to the method, the FoecastNet prediction model of the time-varying weight structure is adopted, so that the problem that the environment input feature weight of a traditional time sequence prediction model is not changed can be effectively solved, the change of the influence degree of environmen
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115456301A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115456301A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115456301A3</originalsourceid><addsrcrecordid>eNqNjkEKwkAMRbtxIeod4gEKlqp7KYorceG-jNPUBmcyJRMqvYYndioewFX4eY_kz7P3NbxQQMVw9BQjBQZHjNCMbDxZ0A7FGwfW9MaSjol6UugFG7I66R61C81XuDuE0E7X7JP4AUoe88HIOAXbmbRXFIpKNk4i8kAS2CNretEmGiQus1lrXMTVby6y9el4q8459qHGmGogo9bVpSh2292-3BSH8h_nAy0pUY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power transmission line dynamic thermal capacity limit prediction method capable of tracking time-varying characteristics of environmental factors</title><source>esp@cenet</source><creator>JIN TIAN ; DOU YANAN ; HU SHUBO ; KO JUNG-NAM ; LU XUELI ; ZHU BAOHANG ; SUN HUI</creator><creatorcontrib>JIN TIAN ; DOU YANAN ; HU SHUBO ; KO JUNG-NAM ; LU XUELI ; ZHU BAOHANG ; SUN HUI</creatorcontrib><description>The invention discloses a power transmission line dynamic thermal capacity limit prediction method capable of tracking environmental factor time-varying characteristics, and belongs to the field of power transmission network line operation state evaluation in a power system. Firstly, main influence factors of the DTR are determined; and establishing a DTR prediction model considering the influence degree time-varying characteristics of the environmental factors. Secondly, obtaining DTR time sequence prediction model training data, and training a DTR time sequence prediction model; and finally, performing DTR prediction by using the DTR time sequence prediction model, and finally realizing rolling prediction. According to the method, the FoecastNet prediction model of the time-varying weight structure is adopted, so that the problem that the environment input feature weight of a traditional time sequence prediction model is not changed can be effectively solved, the change of the influence degree of environmen</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221209&amp;DB=EPODOC&amp;CC=CN&amp;NR=115456301A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221209&amp;DB=EPODOC&amp;CC=CN&amp;NR=115456301A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIN TIAN</creatorcontrib><creatorcontrib>DOU YANAN</creatorcontrib><creatorcontrib>HU SHUBO</creatorcontrib><creatorcontrib>KO JUNG-NAM</creatorcontrib><creatorcontrib>LU XUELI</creatorcontrib><creatorcontrib>ZHU BAOHANG</creatorcontrib><creatorcontrib>SUN HUI</creatorcontrib><title>Power transmission line dynamic thermal capacity limit prediction method capable of tracking time-varying characteristics of environmental factors</title><description>The invention discloses a power transmission line dynamic thermal capacity limit prediction method capable of tracking environmental factor time-varying characteristics, and belongs to the field of power transmission network line operation state evaluation in a power system. Firstly, main influence factors of the DTR are determined; and establishing a DTR prediction model considering the influence degree time-varying characteristics of the environmental factors. Secondly, obtaining DTR time sequence prediction model training data, and training a DTR time sequence prediction model; and finally, performing DTR prediction by using the DTR time sequence prediction model, and finally realizing rolling prediction. According to the method, the FoecastNet prediction model of the time-varying weight structure is adopted, so that the problem that the environment input feature weight of a traditional time sequence prediction model is not changed can be effectively solved, the change of the influence degree of environmen</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjkEKwkAMRbtxIeod4gEKlqp7KYorceG-jNPUBmcyJRMqvYYndioewFX4eY_kz7P3NbxQQMVw9BQjBQZHjNCMbDxZ0A7FGwfW9MaSjol6UugFG7I66R61C81XuDuE0E7X7JP4AUoe88HIOAXbmbRXFIpKNk4i8kAS2CNretEmGiQus1lrXMTVby6y9el4q8459qHGmGogo9bVpSh2292-3BSH8h_nAy0pUY4</recordid><startdate>20221209</startdate><enddate>20221209</enddate><creator>JIN TIAN</creator><creator>DOU YANAN</creator><creator>HU SHUBO</creator><creator>KO JUNG-NAM</creator><creator>LU XUELI</creator><creator>ZHU BAOHANG</creator><creator>SUN HUI</creator><scope>EVB</scope></search><sort><creationdate>20221209</creationdate><title>Power transmission line dynamic thermal capacity limit prediction method capable of tracking time-varying characteristics of environmental factors</title><author>JIN TIAN ; DOU YANAN ; HU SHUBO ; KO JUNG-NAM ; LU XUELI ; ZHU BAOHANG ; SUN HUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115456301A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>JIN TIAN</creatorcontrib><creatorcontrib>DOU YANAN</creatorcontrib><creatorcontrib>HU SHUBO</creatorcontrib><creatorcontrib>KO JUNG-NAM</creatorcontrib><creatorcontrib>LU XUELI</creatorcontrib><creatorcontrib>ZHU BAOHANG</creatorcontrib><creatorcontrib>SUN HUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIN TIAN</au><au>DOU YANAN</au><au>HU SHUBO</au><au>KO JUNG-NAM</au><au>LU XUELI</au><au>ZHU BAOHANG</au><au>SUN HUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power transmission line dynamic thermal capacity limit prediction method capable of tracking time-varying characteristics of environmental factors</title><date>2022-12-09</date><risdate>2022</risdate><abstract>The invention discloses a power transmission line dynamic thermal capacity limit prediction method capable of tracking environmental factor time-varying characteristics, and belongs to the field of power transmission network line operation state evaluation in a power system. Firstly, main influence factors of the DTR are determined; and establishing a DTR prediction model considering the influence degree time-varying characteristics of the environmental factors. Secondly, obtaining DTR time sequence prediction model training data, and training a DTR time sequence prediction model; and finally, performing DTR prediction by using the DTR time sequence prediction model, and finally realizing rolling prediction. According to the method, the FoecastNet prediction model of the time-varying weight structure is adopted, so that the problem that the environment input feature weight of a traditional time sequence prediction model is not changed can be effectively solved, the change of the influence degree of environmen</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115456301A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power transmission line dynamic thermal capacity limit prediction method capable of tracking time-varying characteristics of environmental factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIN%20TIAN&rft.date=2022-12-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115456301A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true