Low-power-consumption system based on spiking neural network and applied to voice keyword recognition

The low-power-consumption system based on the spiking neural network and applied to voice keyword recognition comprises an external storage, an upper computer and a spiking neural network hardware accelerator, wherein the spiking neural network hardware accelerator comprises a storage module, a cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHOU PAN, HAN JIANING, FU YUXIANG, SUN HAOHAN, LI WEI, LI LI, WANG XINYUAN, SUN CONGYI, HE SHUZHUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHOU PAN
HAN JIANING
FU YUXIANG
SUN HAOHAN
LI WEI
LI LI
WANG XINYUAN
SUN CONGYI
HE SHUZHUAN
description The low-power-consumption system based on the spiking neural network and applied to voice keyword recognition comprises an external storage, an upper computer and a spiking neural network hardware accelerator, wherein the spiking neural network hardware accelerator comprises a storage module, a controller, a scheduler and a calculation array; the invention provides a two-dimensional coordinate storage structure for storing the spiking neuron state, on one hand, the invalid state of the neuron can be skipped, invalid calculation can be avoided, and on the basis of the sparsity of the spiking neural network, the calculation amount can be greatly reduced, and on the other hand, the time delay for detecting the valid state can be reduced, and the resource utilization rate can be effectively improved; according to the method, a scheme of convolution straight-through pooling and parallel execution is provided, the link of writing back a middle convolution result to be stored in a traditional design is avoided, afte
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115440226A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115440226A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115440226A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMEbK3dS1FciCv3JaZjCUkzQ5IaentT8ACuHp__eOsC75QEU0IvFLkwjRw1OQhziDjCSwbsYdmsjXYDOJy8tBkxkTcgXQ-S2epsRYIPaYVgcM5nDx4VDU4vvW2xeksbcPfjpthfL8_2JpCpw8BSYU527aMsT3V9qKrmfPzH-QKWdj_u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Low-power-consumption system based on spiking neural network and applied to voice keyword recognition</title><source>esp@cenet</source><creator>ZHOU PAN ; HAN JIANING ; FU YUXIANG ; SUN HAOHAN ; LI WEI ; LI LI ; WANG XINYUAN ; SUN CONGYI ; HE SHUZHUAN</creator><creatorcontrib>ZHOU PAN ; HAN JIANING ; FU YUXIANG ; SUN HAOHAN ; LI WEI ; LI LI ; WANG XINYUAN ; SUN CONGYI ; HE SHUZHUAN</creatorcontrib><description>The low-power-consumption system based on the spiking neural network and applied to voice keyword recognition comprises an external storage, an upper computer and a spiking neural network hardware accelerator, wherein the spiking neural network hardware accelerator comprises a storage module, a controller, a scheduler and a calculation array; the invention provides a two-dimensional coordinate storage structure for storing the spiking neuron state, on one hand, the invalid state of the neuron can be skipped, invalid calculation can be avoided, and on the basis of the sparsity of the spiking neural network, the calculation amount can be greatly reduced, and on the other hand, the time delay for detecting the valid state can be reduced, and the resource utilization rate can be effectively improved; according to the method, a scheme of convolution straight-through pooling and parallel execution is provided, the link of writing back a middle convolution result to be stored in a traditional design is avoided, afte</description><language>chi ; eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221206&amp;DB=EPODOC&amp;CC=CN&amp;NR=115440226A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221206&amp;DB=EPODOC&amp;CC=CN&amp;NR=115440226A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU PAN</creatorcontrib><creatorcontrib>HAN JIANING</creatorcontrib><creatorcontrib>FU YUXIANG</creatorcontrib><creatorcontrib>SUN HAOHAN</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><creatorcontrib>LI LI</creatorcontrib><creatorcontrib>WANG XINYUAN</creatorcontrib><creatorcontrib>SUN CONGYI</creatorcontrib><creatorcontrib>HE SHUZHUAN</creatorcontrib><title>Low-power-consumption system based on spiking neural network and applied to voice keyword recognition</title><description>The low-power-consumption system based on the spiking neural network and applied to voice keyword recognition comprises an external storage, an upper computer and a spiking neural network hardware accelerator, wherein the spiking neural network hardware accelerator comprises a storage module, a controller, a scheduler and a calculation array; the invention provides a two-dimensional coordinate storage structure for storing the spiking neuron state, on one hand, the invalid state of the neuron can be skipped, invalid calculation can be avoided, and on the basis of the sparsity of the spiking neural network, the calculation amount can be greatly reduced, and on the other hand, the time delay for detecting the valid state can be reduced, and the resource utilization rate can be effectively improved; according to the method, a scheme of convolution straight-through pooling and parallel execution is provided, the link of writing back a middle convolution result to be stored in a traditional design is avoided, afte</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMEbK3dS1FciCv3JaZjCUkzQ5IaentT8ACuHp__eOsC75QEU0IvFLkwjRw1OQhziDjCSwbsYdmsjXYDOJy8tBkxkTcgXQ-S2epsRYIPaYVgcM5nDx4VDU4vvW2xeksbcPfjpthfL8_2JpCpw8BSYU527aMsT3V9qKrmfPzH-QKWdj_u</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>ZHOU PAN</creator><creator>HAN JIANING</creator><creator>FU YUXIANG</creator><creator>SUN HAOHAN</creator><creator>LI WEI</creator><creator>LI LI</creator><creator>WANG XINYUAN</creator><creator>SUN CONGYI</creator><creator>HE SHUZHUAN</creator><scope>EVB</scope></search><sort><creationdate>20221206</creationdate><title>Low-power-consumption system based on spiking neural network and applied to voice keyword recognition</title><author>ZHOU PAN ; HAN JIANING ; FU YUXIANG ; SUN HAOHAN ; LI WEI ; LI LI ; WANG XINYUAN ; SUN CONGYI ; HE SHUZHUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115440226A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU PAN</creatorcontrib><creatorcontrib>HAN JIANING</creatorcontrib><creatorcontrib>FU YUXIANG</creatorcontrib><creatorcontrib>SUN HAOHAN</creatorcontrib><creatorcontrib>LI WEI</creatorcontrib><creatorcontrib>LI LI</creatorcontrib><creatorcontrib>WANG XINYUAN</creatorcontrib><creatorcontrib>SUN CONGYI</creatorcontrib><creatorcontrib>HE SHUZHUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU PAN</au><au>HAN JIANING</au><au>FU YUXIANG</au><au>SUN HAOHAN</au><au>LI WEI</au><au>LI LI</au><au>WANG XINYUAN</au><au>SUN CONGYI</au><au>HE SHUZHUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Low-power-consumption system based on spiking neural network and applied to voice keyword recognition</title><date>2022-12-06</date><risdate>2022</risdate><abstract>The low-power-consumption system based on the spiking neural network and applied to voice keyword recognition comprises an external storage, an upper computer and a spiking neural network hardware accelerator, wherein the spiking neural network hardware accelerator comprises a storage module, a controller, a scheduler and a calculation array; the invention provides a two-dimensional coordinate storage structure for storing the spiking neuron state, on one hand, the invalid state of the neuron can be skipped, invalid calculation can be avoided, and on the basis of the sparsity of the spiking neural network, the calculation amount can be greatly reduced, and on the other hand, the time delay for detecting the valid state can be reduced, and the resource utilization rate can be effectively improved; according to the method, a scheme of convolution straight-through pooling and parallel execution is provided, the link of writing back a middle convolution result to be stored in a traditional design is avoided, afte</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115440226A
source esp@cenet
subjects ACOUSTICS
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Low-power-consumption system based on spiking neural network and applied to voice keyword recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20PAN&rft.date=2022-12-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115440226A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true