Classification identification method based on convolutional neural network and multi-modal fusion
The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data includ...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG RUI JIANG CHANGSHUAI JIA HUIMEI ZHAO YONGLIANG ZHAO YANLI WANG PU HE SHUAILEI JIN YU WANG XIANGYANG |
description | The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data including the target; (2) acquiring a 4 * 16 distance-Doppler image around the target, and serially connecting and fusing Doppler data of different modals to respectively form a one-dimensional data set and a two-dimensional data set; (3) constructing a multi-modal fusion model based on a convolutional neural network, and carrying out classification and recognition by using one-dimensional and two-dimensional convolutional neural networks; (4) testing the network through forward propagation and backward propagation training, and optimizing the network model by using a gradient descent algorithm; and (5) performing decision-level fusion on classification results obtained by the two modules through a natural Bayesian algor |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115438708A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115438708A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115438708A3</originalsourceid><addsrcrecordid>eNqNjMEKwjAQRHvxIOo_rB9QsFSxVwmKJ0_ey5psMDTJlm6iv28Uwaun4c08Zl6h8ijirNOYHEdwhmL6YaB0ZwM3FDJQWHN8sM_vDT1EytMn0pOnATAaCNknVwc2pbdZiresZha90Oqbi2p9Ol7VuaaRe5IRNZWDXl2aZrdtu_2mO7T_OC-Y5z6v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Classification identification method based on convolutional neural network and multi-modal fusion</title><source>esp@cenet</source><creator>ZHANG RUI ; JIANG CHANGSHUAI ; JIA HUIMEI ; ZHAO YONGLIANG ; ZHAO YANLI ; WANG PU ; HE SHUAILEI ; JIN YU ; WANG XIANGYANG</creator><creatorcontrib>ZHANG RUI ; JIANG CHANGSHUAI ; JIA HUIMEI ; ZHAO YONGLIANG ; ZHAO YANLI ; WANG PU ; HE SHUAILEI ; JIN YU ; WANG XIANGYANG</creatorcontrib><description>The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data including the target; (2) acquiring a 4 * 16 distance-Doppler image around the target, and serially connecting and fusing Doppler data of different modals to respectively form a one-dimensional data set and a two-dimensional data set; (3) constructing a multi-modal fusion model based on a convolutional neural network, and carrying out classification and recognition by using one-dimensional and two-dimensional convolutional neural networks; (4) testing the network through forward propagation and backward propagation training, and optimizing the network model by using a gradient descent algorithm; and (5) performing decision-level fusion on classification results obtained by the two modules through a natural Bayesian algor</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; HANDLING RECORD CARRIERS ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221206&DB=EPODOC&CC=CN&NR=115438708A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221206&DB=EPODOC&CC=CN&NR=115438708A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>JIANG CHANGSHUAI</creatorcontrib><creatorcontrib>JIA HUIMEI</creatorcontrib><creatorcontrib>ZHAO YONGLIANG</creatorcontrib><creatorcontrib>ZHAO YANLI</creatorcontrib><creatorcontrib>WANG PU</creatorcontrib><creatorcontrib>HE SHUAILEI</creatorcontrib><creatorcontrib>JIN YU</creatorcontrib><creatorcontrib>WANG XIANGYANG</creatorcontrib><title>Classification identification method based on convolutional neural network and multi-modal fusion</title><description>The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data including the target; (2) acquiring a 4 * 16 distance-Doppler image around the target, and serially connecting and fusing Doppler data of different modals to respectively form a one-dimensional data set and a two-dimensional data set; (3) constructing a multi-modal fusion model based on a convolutional neural network, and carrying out classification and recognition by using one-dimensional and two-dimensional convolutional neural networks; (4) testing the network through forward propagation and backward propagation training, and optimizing the network model by using a gradient descent algorithm; and (5) performing decision-level fusion on classification results obtained by the two modules through a natural Bayesian algor</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMEKwjAQRHvxIOo_rB9QsFSxVwmKJ0_ey5psMDTJlm6iv28Uwaun4c08Zl6h8ijirNOYHEdwhmL6YaB0ZwM3FDJQWHN8sM_vDT1EytMn0pOnATAaCNknVwc2pbdZiresZha90Oqbi2p9Ol7VuaaRe5IRNZWDXl2aZrdtu_2mO7T_OC-Y5z6v</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>ZHANG RUI</creator><creator>JIANG CHANGSHUAI</creator><creator>JIA HUIMEI</creator><creator>ZHAO YONGLIANG</creator><creator>ZHAO YANLI</creator><creator>WANG PU</creator><creator>HE SHUAILEI</creator><creator>JIN YU</creator><creator>WANG XIANGYANG</creator><scope>EVB</scope></search><sort><creationdate>20221206</creationdate><title>Classification identification method based on convolutional neural network and multi-modal fusion</title><author>ZHANG RUI ; JIANG CHANGSHUAI ; JIA HUIMEI ; ZHAO YONGLIANG ; ZHAO YANLI ; WANG PU ; HE SHUAILEI ; JIN YU ; WANG XIANGYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115438708A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>JIANG CHANGSHUAI</creatorcontrib><creatorcontrib>JIA HUIMEI</creatorcontrib><creatorcontrib>ZHAO YONGLIANG</creatorcontrib><creatorcontrib>ZHAO YANLI</creatorcontrib><creatorcontrib>WANG PU</creatorcontrib><creatorcontrib>HE SHUAILEI</creatorcontrib><creatorcontrib>JIN YU</creatorcontrib><creatorcontrib>WANG XIANGYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG RUI</au><au>JIANG CHANGSHUAI</au><au>JIA HUIMEI</au><au>ZHAO YONGLIANG</au><au>ZHAO YANLI</au><au>WANG PU</au><au>HE SHUAILEI</au><au>JIN YU</au><au>WANG XIANGYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Classification identification method based on convolutional neural network and multi-modal fusion</title><date>2022-12-06</date><risdate>2022</risdate><abstract>The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data including the target; (2) acquiring a 4 * 16 distance-Doppler image around the target, and serially connecting and fusing Doppler data of different modals to respectively form a one-dimensional data set and a two-dimensional data set; (3) constructing a multi-modal fusion model based on a convolutional neural network, and carrying out classification and recognition by using one-dimensional and two-dimensional convolutional neural networks; (4) testing the network through forward propagation and backward propagation training, and optimizing the network model by using a gradient descent algorithm; and (5) performing decision-level fusion on classification results obtained by the two modules through a natural Bayesian algor</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115438708A |
source | esp@cenet |
subjects | ANALOGOUS ARRANGEMENTS USING OTHER WAVES CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES HANDLING RECORD CARRIERS LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES MEASURING PHYSICS PRESENTATION OF DATA RADIO DIRECTION-FINDING RADIO NAVIGATION RECOGNITION OF DATA RECORD CARRIERS TESTING |
title | Classification identification method based on convolutional neural network and multi-modal fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20RUI&rft.date=2022-12-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115438708A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |