Classification identification method based on convolutional neural network and multi-modal fusion

The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG RUI, JIANG CHANGSHUAI, JIA HUIMEI, ZHAO YONGLIANG, ZHAO YANLI, WANG PU, HE SHUAILEI, JIN YU, WANG XIANGYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG RUI
JIANG CHANGSHUAI
JIA HUIMEI
ZHAO YONGLIANG
ZHAO YANLI
WANG PU
HE SHUAILEI
JIN YU
WANG XIANGYANG
description The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data including the target; (2) acquiring a 4 * 16 distance-Doppler image around the target, and serially connecting and fusing Doppler data of different modals to respectively form a one-dimensional data set and a two-dimensional data set; (3) constructing a multi-modal fusion model based on a convolutional neural network, and carrying out classification and recognition by using one-dimensional and two-dimensional convolutional neural networks; (4) testing the network through forward propagation and backward propagation training, and optimizing the network model by using a gradient descent algorithm; and (5) performing decision-level fusion on classification results obtained by the two modules through a natural Bayesian algor
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115438708A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115438708A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115438708A3</originalsourceid><addsrcrecordid>eNqNjMEKwjAQRHvxIOo_rB9QsFSxVwmKJ0_ey5psMDTJlm6iv28Uwaun4c08Zl6h8ijirNOYHEdwhmL6YaB0ZwM3FDJQWHN8sM_vDT1EytMn0pOnATAaCNknVwc2pbdZiresZha90Oqbi2p9Ol7VuaaRe5IRNZWDXl2aZrdtu_2mO7T_OC-Y5z6v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Classification identification method based on convolutional neural network and multi-modal fusion</title><source>esp@cenet</source><creator>ZHANG RUI ; JIANG CHANGSHUAI ; JIA HUIMEI ; ZHAO YONGLIANG ; ZHAO YANLI ; WANG PU ; HE SHUAILEI ; JIN YU ; WANG XIANGYANG</creator><creatorcontrib>ZHANG RUI ; JIANG CHANGSHUAI ; JIA HUIMEI ; ZHAO YONGLIANG ; ZHAO YANLI ; WANG PU ; HE SHUAILEI ; JIN YU ; WANG XIANGYANG</creatorcontrib><description>The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data including the target; (2) acquiring a 4 * 16 distance-Doppler image around the target, and serially connecting and fusing Doppler data of different modals to respectively form a one-dimensional data set and a two-dimensional data set; (3) constructing a multi-modal fusion model based on a convolutional neural network, and carrying out classification and recognition by using one-dimensional and two-dimensional convolutional neural networks; (4) testing the network through forward propagation and backward propagation training, and optimizing the network model by using a gradient descent algorithm; and (5) performing decision-level fusion on classification results obtained by the two modules through a natural Bayesian algor</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; HANDLING RECORD CARRIERS ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221206&amp;DB=EPODOC&amp;CC=CN&amp;NR=115438708A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221206&amp;DB=EPODOC&amp;CC=CN&amp;NR=115438708A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>JIANG CHANGSHUAI</creatorcontrib><creatorcontrib>JIA HUIMEI</creatorcontrib><creatorcontrib>ZHAO YONGLIANG</creatorcontrib><creatorcontrib>ZHAO YANLI</creatorcontrib><creatorcontrib>WANG PU</creatorcontrib><creatorcontrib>HE SHUAILEI</creatorcontrib><creatorcontrib>JIN YU</creatorcontrib><creatorcontrib>WANG XIANGYANG</creatorcontrib><title>Classification identification method based on convolutional neural network and multi-modal fusion</title><description>The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data including the target; (2) acquiring a 4 * 16 distance-Doppler image around the target, and serially connecting and fusing Doppler data of different modals to respectively form a one-dimensional data set and a two-dimensional data set; (3) constructing a multi-modal fusion model based on a convolutional neural network, and carrying out classification and recognition by using one-dimensional and two-dimensional convolutional neural networks; (4) testing the network through forward propagation and backward propagation training, and optimizing the network model by using a gradient descent algorithm; and (5) performing decision-level fusion on classification results obtained by the two modules through a natural Bayesian algor</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMEKwjAQRHvxIOo_rB9QsFSxVwmKJ0_ey5psMDTJlm6iv28Uwaun4c08Zl6h8ijirNOYHEdwhmL6YaB0ZwM3FDJQWHN8sM_vDT1EytMn0pOnATAaCNknVwc2pbdZiresZha90Oqbi2p9Ol7VuaaRe5IRNZWDXl2aZrdtu_2mO7T_OC-Y5z6v</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>ZHANG RUI</creator><creator>JIANG CHANGSHUAI</creator><creator>JIA HUIMEI</creator><creator>ZHAO YONGLIANG</creator><creator>ZHAO YANLI</creator><creator>WANG PU</creator><creator>HE SHUAILEI</creator><creator>JIN YU</creator><creator>WANG XIANGYANG</creator><scope>EVB</scope></search><sort><creationdate>20221206</creationdate><title>Classification identification method based on convolutional neural network and multi-modal fusion</title><author>ZHANG RUI ; JIANG CHANGSHUAI ; JIA HUIMEI ; ZHAO YONGLIANG ; ZHAO YANLI ; WANG PU ; HE SHUAILEI ; JIN YU ; WANG XIANGYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115438708A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>JIANG CHANGSHUAI</creatorcontrib><creatorcontrib>JIA HUIMEI</creatorcontrib><creatorcontrib>ZHAO YONGLIANG</creatorcontrib><creatorcontrib>ZHAO YANLI</creatorcontrib><creatorcontrib>WANG PU</creatorcontrib><creatorcontrib>HE SHUAILEI</creatorcontrib><creatorcontrib>JIN YU</creatorcontrib><creatorcontrib>WANG XIANGYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG RUI</au><au>JIANG CHANGSHUAI</au><au>JIA HUIMEI</au><au>ZHAO YONGLIANG</au><au>ZHAO YANLI</au><au>WANG PU</au><au>HE SHUAILEI</au><au>JIN YU</au><au>WANG XIANGYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Classification identification method based on convolutional neural network and multi-modal fusion</title><date>2022-12-06</date><risdate>2022</risdate><abstract>The invention discloses a classification identification method based on a convolutional neural network and multi-modal fusion. According to the implementation scheme, the method comprises the following steps: (1) processing original echoes of a target to obtain distance-Doppler-amplitude data including the target; (2) acquiring a 4 * 16 distance-Doppler image around the target, and serially connecting and fusing Doppler data of different modals to respectively form a one-dimensional data set and a two-dimensional data set; (3) constructing a multi-modal fusion model based on a convolutional neural network, and carrying out classification and recognition by using one-dimensional and two-dimensional convolutional neural networks; (4) testing the network through forward propagation and backward propagation training, and optimizing the network model by using a gradient descent algorithm; and (5) performing decision-level fusion on classification results obtained by the two modules through a natural Bayesian algor</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115438708A
source esp@cenet
subjects ANALOGOUS ARRANGEMENTS USING OTHER WAVES
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES
HANDLING RECORD CARRIERS
LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES
MEASURING
PHYSICS
PRESENTATION OF DATA
RADIO DIRECTION-FINDING
RADIO NAVIGATION
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title Classification identification method based on convolutional neural network and multi-modal fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20RUI&rft.date=2022-12-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115438708A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true