Method for predicting height of water flowing fractured zone in layered fully mechanized caving mining of ultra-thick coal seam

The invention discloses an ultra-thick coal seam layered fully-mechanized caving mining water flowing fractured zone height prediction method, which comprises the following steps of: collecting geological data of a prediction working face, and mastering a working face coal mining method, overlying s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: QIAO WEI, HU DONGQIANG, DUAN YULU, CHENG XIANGGANG, LIU MENGNAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator QIAO WEI
HU DONGQIANG
DUAN YULU
CHENG XIANGGANG
LIU MENGNAN
description The invention discloses an ultra-thick coal seam layered fully-mechanized caving mining water flowing fractured zone height prediction method, which comprises the following steps of: collecting geological data of a prediction working face, and mastering a working face coal mining method, overlying strata geological conditions and working face parameters in detail; according to the method, new prediction indexes such as the thickness of the overlying goaf and the distance between the working face and the main key layer are provided, a nonlinear prediction method using the GRA-LS-SVM model is provided, and the height of the overlying strata water flowing fractured zone of the ultra-thick coal seam can be accurately and economically predicted. 本发明公开了一种巨厚煤层分层综放开采导水裂隙带高度预测方法,包含以下步骤:收集预测工作面地质资料,详细掌握工作面采煤方法、覆岩地质条件、工作面参数。本发明提出上覆采空区厚度、工作面距主关键层距离等新的预测指标,提出运用GRA-LS-SVM模型非线性预测方法,能够较为准确、经济的预测出巨厚煤层覆岩导水裂隙带高度。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115422740A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115422740A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115422740A3</originalsourceid><addsrcrecordid>eNqNjDEOgkAQRWksjHqH8QAkghhrQzQ2WtmTyTLrTlx2yTJIoPHqsokHsPr5L-__ZfK5kRhfg_YB2kA1K2H3BEP8NAJew4BCAbT1Q-Q6oJJ-9mDyjoAdWBwpdt1bO0JDyqDjaQYK33HRsIsxP_VWAqZiWL1AebTQETbrZKHRdrT55SrZXs6P8ppS6yvqWlTkSKrynmWHIs-Pxe60_8f5AutDSMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for predicting height of water flowing fractured zone in layered fully mechanized caving mining of ultra-thick coal seam</title><source>esp@cenet</source><creator>QIAO WEI ; HU DONGQIANG ; DUAN YULU ; CHENG XIANGGANG ; LIU MENGNAN</creator><creatorcontrib>QIAO WEI ; HU DONGQIANG ; DUAN YULU ; CHENG XIANGGANG ; LIU MENGNAN</creatorcontrib><description>The invention discloses an ultra-thick coal seam layered fully-mechanized caving mining water flowing fractured zone height prediction method, which comprises the following steps of: collecting geological data of a prediction working face, and mastering a working face coal mining method, overlying strata geological conditions and working face parameters in detail; according to the method, new prediction indexes such as the thickness of the overlying goaf and the distance between the working face and the main key layer are provided, a nonlinear prediction method using the GRA-LS-SVM model is provided, and the height of the overlying strata water flowing fractured zone of the ultra-thick coal seam can be accurately and economically predicted. 本发明公开了一种巨厚煤层分层综放开采导水裂隙带高度预测方法,包含以下步骤:收集预测工作面地质资料,详细掌握工作面采煤方法、覆岩地质条件、工作面参数。本发明提出上覆采空区厚度、工作面距主关键层距离等新的预测指标,提出运用GRA-LS-SVM模型非线性预测方法,能够较为准确、经济的预测出巨厚煤层覆岩导水裂隙带高度。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221202&amp;DB=EPODOC&amp;CC=CN&amp;NR=115422740A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221202&amp;DB=EPODOC&amp;CC=CN&amp;NR=115422740A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QIAO WEI</creatorcontrib><creatorcontrib>HU DONGQIANG</creatorcontrib><creatorcontrib>DUAN YULU</creatorcontrib><creatorcontrib>CHENG XIANGGANG</creatorcontrib><creatorcontrib>LIU MENGNAN</creatorcontrib><title>Method for predicting height of water flowing fractured zone in layered fully mechanized caving mining of ultra-thick coal seam</title><description>The invention discloses an ultra-thick coal seam layered fully-mechanized caving mining water flowing fractured zone height prediction method, which comprises the following steps of: collecting geological data of a prediction working face, and mastering a working face coal mining method, overlying strata geological conditions and working face parameters in detail; according to the method, new prediction indexes such as the thickness of the overlying goaf and the distance between the working face and the main key layer are provided, a nonlinear prediction method using the GRA-LS-SVM model is provided, and the height of the overlying strata water flowing fractured zone of the ultra-thick coal seam can be accurately and economically predicted. 本发明公开了一种巨厚煤层分层综放开采导水裂隙带高度预测方法,包含以下步骤:收集预测工作面地质资料,详细掌握工作面采煤方法、覆岩地质条件、工作面参数。本发明提出上覆采空区厚度、工作面距主关键层距离等新的预测指标,提出运用GRA-LS-SVM模型非线性预测方法,能够较为准确、经济的预测出巨厚煤层覆岩导水裂隙带高度。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOgkAQRWksjHqH8QAkghhrQzQ2WtmTyTLrTlx2yTJIoPHqsokHsPr5L-__ZfK5kRhfg_YB2kA1K2H3BEP8NAJew4BCAbT1Q-Q6oJJ-9mDyjoAdWBwpdt1bO0JDyqDjaQYK33HRsIsxP_VWAqZiWL1AebTQETbrZKHRdrT55SrZXs6P8ppS6yvqWlTkSKrynmWHIs-Pxe60_8f5AutDSMs</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>QIAO WEI</creator><creator>HU DONGQIANG</creator><creator>DUAN YULU</creator><creator>CHENG XIANGGANG</creator><creator>LIU MENGNAN</creator><scope>EVB</scope></search><sort><creationdate>20221202</creationdate><title>Method for predicting height of water flowing fractured zone in layered fully mechanized caving mining of ultra-thick coal seam</title><author>QIAO WEI ; HU DONGQIANG ; DUAN YULU ; CHENG XIANGGANG ; LIU MENGNAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115422740A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>QIAO WEI</creatorcontrib><creatorcontrib>HU DONGQIANG</creatorcontrib><creatorcontrib>DUAN YULU</creatorcontrib><creatorcontrib>CHENG XIANGGANG</creatorcontrib><creatorcontrib>LIU MENGNAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QIAO WEI</au><au>HU DONGQIANG</au><au>DUAN YULU</au><au>CHENG XIANGGANG</au><au>LIU MENGNAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for predicting height of water flowing fractured zone in layered fully mechanized caving mining of ultra-thick coal seam</title><date>2022-12-02</date><risdate>2022</risdate><abstract>The invention discloses an ultra-thick coal seam layered fully-mechanized caving mining water flowing fractured zone height prediction method, which comprises the following steps of: collecting geological data of a prediction working face, and mastering a working face coal mining method, overlying strata geological conditions and working face parameters in detail; according to the method, new prediction indexes such as the thickness of the overlying goaf and the distance between the working face and the main key layer are provided, a nonlinear prediction method using the GRA-LS-SVM model is provided, and the height of the overlying strata water flowing fractured zone of the ultra-thick coal seam can be accurately and economically predicted. 本发明公开了一种巨厚煤层分层综放开采导水裂隙带高度预测方法,包含以下步骤:收集预测工作面地质资料,详细掌握工作面采煤方法、覆岩地质条件、工作面参数。本发明提出上覆采空区厚度、工作面距主关键层距离等新的预测指标,提出运用GRA-LS-SVM模型非线性预测方法,能够较为准确、经济的预测出巨厚煤层覆岩导水裂隙带高度。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115422740A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Method for predicting height of water flowing fractured zone in layered fully mechanized caving mining of ultra-thick coal seam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QIAO%20WEI&rft.date=2022-12-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115422740A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true