Method and system for predicting low-cycle fatigue life of nickel-based superalloy

The invention discloses a nickel-based high-temperature alloy low-cycle fatigue life prediction method and system, and relates to the technical field of low-cycle fatigue life prediction.The method comprises the steps that firstly, feature screening is conducted on input features in an initial data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HAO MENGQUAN, XU LUOPENG, ZHANG RULUN, XIONG LEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HAO MENGQUAN
XU LUOPENG
ZHANG RULUN
XIONG LEI
description The invention discloses a nickel-based high-temperature alloy low-cycle fatigue life prediction method and system, and relates to the technical field of low-cycle fatigue life prediction.The method comprises the steps that firstly, feature screening is conducted on input features in an initial data set based on a Pearson's correlation coefficient and a maximum information coefficient, and the initial data set obtained after feature screening is divided into a training set and a test set; constructing a GA-RF regression prediction model by using the training set based on a random forest and a genetic algorithm; using the test set to test the reliability of the model until the prediction precision reaches a preset condition, and obtaining a final GA-RF regression prediction model; and performing low-cycle fatigue life prediction on the target nickel-based high-temperature alloy by using the final GA-RF regression prediction model. The prediction model is short in training time, and the low-cycle fatigue life of
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115410671A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115410671A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115410671A3</originalsourceid><addsrcrecordid>eNqNyzsOAiEURmEaC6Pu4boAEomPqc1EY6OFsZ8g8zMSr0CAiWH3WrgAq9N8ZyquZ5RH6En7nnLNBS-yIVFM6J0pzg_E4S1NNQyyurhhBLGzoGDJO_MEy7vO-M5jRNLMoc7FxGrOWPw6E8vj4daeJGLokKM28Chde1Fqu1GrXaP263_MBwXkN_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and system for predicting low-cycle fatigue life of nickel-based superalloy</title><source>esp@cenet</source><creator>HAO MENGQUAN ; XU LUOPENG ; ZHANG RULUN ; XIONG LEI</creator><creatorcontrib>HAO MENGQUAN ; XU LUOPENG ; ZHANG RULUN ; XIONG LEI</creatorcontrib><description>The invention discloses a nickel-based high-temperature alloy low-cycle fatigue life prediction method and system, and relates to the technical field of low-cycle fatigue life prediction.The method comprises the steps that firstly, feature screening is conducted on input features in an initial data set based on a Pearson's correlation coefficient and a maximum information coefficient, and the initial data set obtained after feature screening is divided into a training set and a test set; constructing a GA-RF regression prediction model by using the training set based on a random forest and a genetic algorithm; using the test set to test the reliability of the model until the prediction precision reaches a preset condition, and obtaining a final GA-RF regression prediction model; and performing low-cycle fatigue life prediction on the target nickel-based high-temperature alloy by using the final GA-RF regression prediction model. The prediction model is short in training time, and the low-cycle fatigue life of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221129&amp;DB=EPODOC&amp;CC=CN&amp;NR=115410671A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221129&amp;DB=EPODOC&amp;CC=CN&amp;NR=115410671A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAO MENGQUAN</creatorcontrib><creatorcontrib>XU LUOPENG</creatorcontrib><creatorcontrib>ZHANG RULUN</creatorcontrib><creatorcontrib>XIONG LEI</creatorcontrib><title>Method and system for predicting low-cycle fatigue life of nickel-based superalloy</title><description>The invention discloses a nickel-based high-temperature alloy low-cycle fatigue life prediction method and system, and relates to the technical field of low-cycle fatigue life prediction.The method comprises the steps that firstly, feature screening is conducted on input features in an initial data set based on a Pearson's correlation coefficient and a maximum information coefficient, and the initial data set obtained after feature screening is divided into a training set and a test set; constructing a GA-RF regression prediction model by using the training set based on a random forest and a genetic algorithm; using the test set to test the reliability of the model until the prediction precision reaches a preset condition, and obtaining a final GA-RF regression prediction model; and performing low-cycle fatigue life prediction on the target nickel-based high-temperature alloy by using the final GA-RF regression prediction model. The prediction model is short in training time, and the low-cycle fatigue life of</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzsOAiEURmEaC6Pu4boAEomPqc1EY6OFsZ8g8zMSr0CAiWH3WrgAq9N8ZyquZ5RH6En7nnLNBS-yIVFM6J0pzg_E4S1NNQyyurhhBLGzoGDJO_MEy7vO-M5jRNLMoc7FxGrOWPw6E8vj4daeJGLokKM28Chde1Fqu1GrXaP263_MBwXkN_E</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>HAO MENGQUAN</creator><creator>XU LUOPENG</creator><creator>ZHANG RULUN</creator><creator>XIONG LEI</creator><scope>EVB</scope></search><sort><creationdate>20221129</creationdate><title>Method and system for predicting low-cycle fatigue life of nickel-based superalloy</title><author>HAO MENGQUAN ; XU LUOPENG ; ZHANG RULUN ; XIONG LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115410671A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HAO MENGQUAN</creatorcontrib><creatorcontrib>XU LUOPENG</creatorcontrib><creatorcontrib>ZHANG RULUN</creatorcontrib><creatorcontrib>XIONG LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAO MENGQUAN</au><au>XU LUOPENG</au><au>ZHANG RULUN</au><au>XIONG LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and system for predicting low-cycle fatigue life of nickel-based superalloy</title><date>2022-11-29</date><risdate>2022</risdate><abstract>The invention discloses a nickel-based high-temperature alloy low-cycle fatigue life prediction method and system, and relates to the technical field of low-cycle fatigue life prediction.The method comprises the steps that firstly, feature screening is conducted on input features in an initial data set based on a Pearson's correlation coefficient and a maximum information coefficient, and the initial data set obtained after feature screening is divided into a training set and a test set; constructing a GA-RF regression prediction model by using the training set based on a random forest and a genetic algorithm; using the test set to test the reliability of the model until the prediction precision reaches a preset condition, and obtaining a final GA-RF regression prediction model; and performing low-cycle fatigue life prediction on the target nickel-based high-temperature alloy by using the final GA-RF regression prediction model. The prediction model is short in training time, and the low-cycle fatigue life of</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115410671A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Method and system for predicting low-cycle fatigue life of nickel-based superalloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAO%20MENGQUAN&rft.date=2022-11-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115410671A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true