Infrared image vehicle detection method
The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhil...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GAO HAOLIN ZHANG JIE XU MIAOYU LIU ZHENZHEN WANG KUN CHEN ZHAOYANG |
description | The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhile, a sequence frame image is obtained in the infrared real-time monitoring video stream, and movement detection is carried out; and if a target is detected, inputting the target into a deep learning network model for vehicle detection. According to the method, two modes of static target detection and moving target detection are combined, and a single-frame image detection method and a sequence frame image detection method are adopted, so that vehicle target detection under an infrared imaging condition is realized, and the infrared image vehicle detection accuracy is improved.
本发明涉及一种红外图像车辆检测方法,属于图像处理技术领域。本发明在红外监控视频流中获取单帧图像,输入到深度学习网络模型进行车辆检测;同时在红外实时监控视频流中获取序列帧图像,进行移动侦测检测;如果检测到目标,则输入到深度学习网络模型进行车辆检测。本发明结合静目标检测和动目标检测两 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115393254A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115393254A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115393254A3</originalsourceid><addsrcrecordid>eNrjZFD3zEsrSixKTVHIzE1MT1UoS83ITM5JVUhJLUlNLsnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhqbGlsZGpiaOxsSoAQCXlSfe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Infrared image vehicle detection method</title><source>esp@cenet</source><creator>GAO HAOLIN ; ZHANG JIE ; XU MIAOYU ; LIU ZHENZHEN ; WANG KUN ; CHEN ZHAOYANG</creator><creatorcontrib>GAO HAOLIN ; ZHANG JIE ; XU MIAOYU ; LIU ZHENZHEN ; WANG KUN ; CHEN ZHAOYANG</creatorcontrib><description>The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhile, a sequence frame image is obtained in the infrared real-time monitoring video stream, and movement detection is carried out; and if a target is detected, inputting the target into a deep learning network model for vehicle detection. According to the method, two modes of static target detection and moving target detection are combined, and a single-frame image detection method and a sequence frame image detection method are adopted, so that vehicle target detection under an infrared imaging condition is realized, and the infrared image vehicle detection accuracy is improved.
本发明涉及一种红外图像车辆检测方法,属于图像处理技术领域。本发明在红外监控视频流中获取单帧图像,输入到深度学习网络模型进行车辆检测;同时在红外实时监控视频流中获取序列帧图像,进行移动侦测检测;如果检测到目标,则输入到深度学习网络模型进行车辆检测。本发明结合静目标检测和动目标检测两</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221125&DB=EPODOC&CC=CN&NR=115393254A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221125&DB=EPODOC&CC=CN&NR=115393254A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GAO HAOLIN</creatorcontrib><creatorcontrib>ZHANG JIE</creatorcontrib><creatorcontrib>XU MIAOYU</creatorcontrib><creatorcontrib>LIU ZHENZHEN</creatorcontrib><creatorcontrib>WANG KUN</creatorcontrib><creatorcontrib>CHEN ZHAOYANG</creatorcontrib><title>Infrared image vehicle detection method</title><description>The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhile, a sequence frame image is obtained in the infrared real-time monitoring video stream, and movement detection is carried out; and if a target is detected, inputting the target into a deep learning network model for vehicle detection. According to the method, two modes of static target detection and moving target detection are combined, and a single-frame image detection method and a sequence frame image detection method are adopted, so that vehicle target detection under an infrared imaging condition is realized, and the infrared image vehicle detection accuracy is improved.
本发明涉及一种红外图像车辆检测方法,属于图像处理技术领域。本发明在红外监控视频流中获取单帧图像,输入到深度学习网络模型进行车辆检测;同时在红外实时监控视频流中获取序列帧图像,进行移动侦测检测;如果检测到目标,则输入到深度学习网络模型进行车辆检测。本发明结合静目标检测和动目标检测两</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD3zEsrSixKTVHIzE1MT1UoS83ITM5JVUhJLUlNLsnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhqbGlsZGpiaOxsSoAQCXlSfe</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>GAO HAOLIN</creator><creator>ZHANG JIE</creator><creator>XU MIAOYU</creator><creator>LIU ZHENZHEN</creator><creator>WANG KUN</creator><creator>CHEN ZHAOYANG</creator><scope>EVB</scope></search><sort><creationdate>20221125</creationdate><title>Infrared image vehicle detection method</title><author>GAO HAOLIN ; ZHANG JIE ; XU MIAOYU ; LIU ZHENZHEN ; WANG KUN ; CHEN ZHAOYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115393254A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GAO HAOLIN</creatorcontrib><creatorcontrib>ZHANG JIE</creatorcontrib><creatorcontrib>XU MIAOYU</creatorcontrib><creatorcontrib>LIU ZHENZHEN</creatorcontrib><creatorcontrib>WANG KUN</creatorcontrib><creatorcontrib>CHEN ZHAOYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GAO HAOLIN</au><au>ZHANG JIE</au><au>XU MIAOYU</au><au>LIU ZHENZHEN</au><au>WANG KUN</au><au>CHEN ZHAOYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Infrared image vehicle detection method</title><date>2022-11-25</date><risdate>2022</risdate><abstract>The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhile, a sequence frame image is obtained in the infrared real-time monitoring video stream, and movement detection is carried out; and if a target is detected, inputting the target into a deep learning network model for vehicle detection. According to the method, two modes of static target detection and moving target detection are combined, and a single-frame image detection method and a sequence frame image detection method are adopted, so that vehicle target detection under an infrared imaging condition is realized, and the infrared image vehicle detection accuracy is improved.
本发明涉及一种红外图像车辆检测方法,属于图像处理技术领域。本发明在红外监控视频流中获取单帧图像,输入到深度学习网络模型进行车辆检测;同时在红外实时监控视频流中获取序列帧图像,进行移动侦测检测;如果检测到目标,则输入到深度学习网络模型进行车辆检测。本发明结合静目标检测和动目标检测两</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115393254A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Infrared image vehicle detection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GAO%20HAOLIN&rft.date=2022-11-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115393254A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |