Infrared image vehicle detection method

The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GAO HAOLIN, ZHANG JIE, XU MIAOYU, LIU ZHENZHEN, WANG KUN, CHEN ZHAOYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GAO HAOLIN
ZHANG JIE
XU MIAOYU
LIU ZHENZHEN
WANG KUN
CHEN ZHAOYANG
description The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhile, a sequence frame image is obtained in the infrared real-time monitoring video stream, and movement detection is carried out; and if a target is detected, inputting the target into a deep learning network model for vehicle detection. According to the method, two modes of static target detection and moving target detection are combined, and a single-frame image detection method and a sequence frame image detection method are adopted, so that vehicle target detection under an infrared imaging condition is realized, and the infrared image vehicle detection accuracy is improved. 本发明涉及一种红外图像车辆检测方法,属于图像处理技术领域。本发明在红外监控视频流中获取单帧图像,输入到深度学习网络模型进行车辆检测;同时在红外实时监控视频流中获取序列帧图像,进行移动侦测检测;如果检测到目标,则输入到深度学习网络模型进行车辆检测。本发明结合静目标检测和动目标检测两
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115393254A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115393254A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115393254A3</originalsourceid><addsrcrecordid>eNrjZFD3zEsrSixKTVHIzE1MT1UoS83ITM5JVUhJLUlNLsnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhqbGlsZGpiaOxsSoAQCXlSfe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Infrared image vehicle detection method</title><source>esp@cenet</source><creator>GAO HAOLIN ; ZHANG JIE ; XU MIAOYU ; LIU ZHENZHEN ; WANG KUN ; CHEN ZHAOYANG</creator><creatorcontrib>GAO HAOLIN ; ZHANG JIE ; XU MIAOYU ; LIU ZHENZHEN ; WANG KUN ; CHEN ZHAOYANG</creatorcontrib><description>The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhile, a sequence frame image is obtained in the infrared real-time monitoring video stream, and movement detection is carried out; and if a target is detected, inputting the target into a deep learning network model for vehicle detection. According to the method, two modes of static target detection and moving target detection are combined, and a single-frame image detection method and a sequence frame image detection method are adopted, so that vehicle target detection under an infrared imaging condition is realized, and the infrared image vehicle detection accuracy is improved. 本发明涉及一种红外图像车辆检测方法,属于图像处理技术领域。本发明在红外监控视频流中获取单帧图像,输入到深度学习网络模型进行车辆检测;同时在红外实时监控视频流中获取序列帧图像,进行移动侦测检测;如果检测到目标,则输入到深度学习网络模型进行车辆检测。本发明结合静目标检测和动目标检测两</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221125&amp;DB=EPODOC&amp;CC=CN&amp;NR=115393254A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221125&amp;DB=EPODOC&amp;CC=CN&amp;NR=115393254A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GAO HAOLIN</creatorcontrib><creatorcontrib>ZHANG JIE</creatorcontrib><creatorcontrib>XU MIAOYU</creatorcontrib><creatorcontrib>LIU ZHENZHEN</creatorcontrib><creatorcontrib>WANG KUN</creatorcontrib><creatorcontrib>CHEN ZHAOYANG</creatorcontrib><title>Infrared image vehicle detection method</title><description>The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhile, a sequence frame image is obtained in the infrared real-time monitoring video stream, and movement detection is carried out; and if a target is detected, inputting the target into a deep learning network model for vehicle detection. According to the method, two modes of static target detection and moving target detection are combined, and a single-frame image detection method and a sequence frame image detection method are adopted, so that vehicle target detection under an infrared imaging condition is realized, and the infrared image vehicle detection accuracy is improved. 本发明涉及一种红外图像车辆检测方法,属于图像处理技术领域。本发明在红外监控视频流中获取单帧图像,输入到深度学习网络模型进行车辆检测;同时在红外实时监控视频流中获取序列帧图像,进行移动侦测检测;如果检测到目标,则输入到深度学习网络模型进行车辆检测。本发明结合静目标检测和动目标检测两</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD3zEsrSixKTVHIzE1MT1UoS83ITM5JVUhJLUlNLsnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhqbGlsZGpiaOxsSoAQCXlSfe</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>GAO HAOLIN</creator><creator>ZHANG JIE</creator><creator>XU MIAOYU</creator><creator>LIU ZHENZHEN</creator><creator>WANG KUN</creator><creator>CHEN ZHAOYANG</creator><scope>EVB</scope></search><sort><creationdate>20221125</creationdate><title>Infrared image vehicle detection method</title><author>GAO HAOLIN ; ZHANG JIE ; XU MIAOYU ; LIU ZHENZHEN ; WANG KUN ; CHEN ZHAOYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115393254A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GAO HAOLIN</creatorcontrib><creatorcontrib>ZHANG JIE</creatorcontrib><creatorcontrib>XU MIAOYU</creatorcontrib><creatorcontrib>LIU ZHENZHEN</creatorcontrib><creatorcontrib>WANG KUN</creatorcontrib><creatorcontrib>CHEN ZHAOYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GAO HAOLIN</au><au>ZHANG JIE</au><au>XU MIAOYU</au><au>LIU ZHENZHEN</au><au>WANG KUN</au><au>CHEN ZHAOYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Infrared image vehicle detection method</title><date>2022-11-25</date><risdate>2022</risdate><abstract>The invention relates to an infrared image vehicle detection method, and belongs to the technical field of image processing. According to the method, a single-frame image is acquired from an infrared monitoring video stream and input into a deep learning network model for vehicle detection; meanwhile, a sequence frame image is obtained in the infrared real-time monitoring video stream, and movement detection is carried out; and if a target is detected, inputting the target into a deep learning network model for vehicle detection. According to the method, two modes of static target detection and moving target detection are combined, and a single-frame image detection method and a sequence frame image detection method are adopted, so that vehicle target detection under an infrared imaging condition is realized, and the infrared image vehicle detection accuracy is improved. 本发明涉及一种红外图像车辆检测方法,属于图像处理技术领域。本发明在红外监控视频流中获取单帧图像,输入到深度学习网络模型进行车辆检测;同时在红外实时监控视频流中获取序列帧图像,进行移动侦测检测;如果检测到目标,则输入到深度学习网络模型进行车辆检测。本发明结合静目标检测和动目标检测两</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115393254A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Infrared image vehicle detection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GAO%20HAOLIN&rft.date=2022-11-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115393254A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true