Retrieval knowledge graph library generation method based on combination of scene graph and concept network

A retrieval knowledge graph library generation method based on combination of a scene graph and a conceptual network comprises the following steps: 1) model pre-training: pre-training input data on a neural network, and detecting types and positions of objects appearing in a picture; 2) training a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HONG ZHEN, QIAN JIAXU, CHEN JIAJUN, YU ZHICHENG, WEN ZHENYU, PENG YINGYING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HONG ZHEN
QIAN JIAXU
CHEN JIAJUN
YU ZHICHENG
WEN ZHENYU
PENG YINGYING
description A retrieval knowledge graph library generation method based on combination of a scene graph and a conceptual network comprises the following steps: 1) model pre-training: pre-training input data on a neural network, and detecting types and positions of objects appearing in a picture; 2) training a scene graph: carrying out unbiased training on a pre-training result of the model, finally outputting a file of information related to the scene graph by applying a neural network model, and predicting a relationship between different types in the image; 3) automatically expanding the knowledge graph; 4) testing the trained scene graph model; 5) extracting and processing file information related to the scene graph and the concept network, and then importing the file information into a retrieval database to finally form the retrieval database; combining nodes and relations with high similarity in the scene graph, fusing the scene graph and the knowledge graph database corresponding to the concept network, and finally
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115391548A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115391548A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115391548A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbtxIeodxgO4KLWgy1IUVy7EfZk00zY0nQlJsHh7I_YArj6f9946Gx8UvaEXWhhZZku6J-g9ugGsUR79G3pi8hiNMEwUB9GgMJCG9FuZlOEfkw5Cm9SlRtYJc0suAlOcxY_bbNWhDbRbdpPtr5dnfTuQk4aCw28em_qe52VxzsvjqSr-cT4XSEHL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Retrieval knowledge graph library generation method based on combination of scene graph and concept network</title><source>esp@cenet</source><creator>HONG ZHEN ; QIAN JIAXU ; CHEN JIAJUN ; YU ZHICHENG ; WEN ZHENYU ; PENG YINGYING</creator><creatorcontrib>HONG ZHEN ; QIAN JIAXU ; CHEN JIAJUN ; YU ZHICHENG ; WEN ZHENYU ; PENG YINGYING</creatorcontrib><description>A retrieval knowledge graph library generation method based on combination of a scene graph and a conceptual network comprises the following steps: 1) model pre-training: pre-training input data on a neural network, and detecting types and positions of objects appearing in a picture; 2) training a scene graph: carrying out unbiased training on a pre-training result of the model, finally outputting a file of information related to the scene graph by applying a neural network model, and predicting a relationship between different types in the image; 3) automatically expanding the knowledge graph; 4) testing the trained scene graph model; 5) extracting and processing file information related to the scene graph and the concept network, and then importing the file information into a retrieval database to finally form the retrieval database; combining nodes and relations with high similarity in the scene graph, fusing the scene graph and the knowledge graph database corresponding to the concept network, and finally</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221125&amp;DB=EPODOC&amp;CC=CN&amp;NR=115391548A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221125&amp;DB=EPODOC&amp;CC=CN&amp;NR=115391548A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HONG ZHEN</creatorcontrib><creatorcontrib>QIAN JIAXU</creatorcontrib><creatorcontrib>CHEN JIAJUN</creatorcontrib><creatorcontrib>YU ZHICHENG</creatorcontrib><creatorcontrib>WEN ZHENYU</creatorcontrib><creatorcontrib>PENG YINGYING</creatorcontrib><title>Retrieval knowledge graph library generation method based on combination of scene graph and concept network</title><description>A retrieval knowledge graph library generation method based on combination of a scene graph and a conceptual network comprises the following steps: 1) model pre-training: pre-training input data on a neural network, and detecting types and positions of objects appearing in a picture; 2) training a scene graph: carrying out unbiased training on a pre-training result of the model, finally outputting a file of information related to the scene graph by applying a neural network model, and predicting a relationship between different types in the image; 3) automatically expanding the knowledge graph; 4) testing the trained scene graph model; 5) extracting and processing file information related to the scene graph and the concept network, and then importing the file information into a retrieval database to finally form the retrieval database; combining nodes and relations with high similarity in the scene graph, fusing the scene graph and the knowledge graph database corresponding to the concept network, and finally</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbtxIeodxgO4KLWgy1IUVy7EfZk00zY0nQlJsHh7I_YArj6f9946Gx8UvaEXWhhZZku6J-g9ugGsUR79G3pi8hiNMEwUB9GgMJCG9FuZlOEfkw5Cm9SlRtYJc0suAlOcxY_bbNWhDbRbdpPtr5dnfTuQk4aCw28em_qe52VxzsvjqSr-cT4XSEHL</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>HONG ZHEN</creator><creator>QIAN JIAXU</creator><creator>CHEN JIAJUN</creator><creator>YU ZHICHENG</creator><creator>WEN ZHENYU</creator><creator>PENG YINGYING</creator><scope>EVB</scope></search><sort><creationdate>20221125</creationdate><title>Retrieval knowledge graph library generation method based on combination of scene graph and concept network</title><author>HONG ZHEN ; QIAN JIAXU ; CHEN JIAJUN ; YU ZHICHENG ; WEN ZHENYU ; PENG YINGYING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115391548A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HONG ZHEN</creatorcontrib><creatorcontrib>QIAN JIAXU</creatorcontrib><creatorcontrib>CHEN JIAJUN</creatorcontrib><creatorcontrib>YU ZHICHENG</creatorcontrib><creatorcontrib>WEN ZHENYU</creatorcontrib><creatorcontrib>PENG YINGYING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HONG ZHEN</au><au>QIAN JIAXU</au><au>CHEN JIAJUN</au><au>YU ZHICHENG</au><au>WEN ZHENYU</au><au>PENG YINGYING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Retrieval knowledge graph library generation method based on combination of scene graph and concept network</title><date>2022-11-25</date><risdate>2022</risdate><abstract>A retrieval knowledge graph library generation method based on combination of a scene graph and a conceptual network comprises the following steps: 1) model pre-training: pre-training input data on a neural network, and detecting types and positions of objects appearing in a picture; 2) training a scene graph: carrying out unbiased training on a pre-training result of the model, finally outputting a file of information related to the scene graph by applying a neural network model, and predicting a relationship between different types in the image; 3) automatically expanding the knowledge graph; 4) testing the trained scene graph model; 5) extracting and processing file information related to the scene graph and the concept network, and then importing the file information into a retrieval database to finally form the retrieval database; combining nodes and relations with high similarity in the scene graph, fusing the scene graph and the knowledge graph database corresponding to the concept network, and finally</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115391548A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Retrieval knowledge graph library generation method based on combination of scene graph and concept network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HONG%20ZHEN&rft.date=2022-11-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115391548A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true