Image shadow removal model and construction method, device and application thereof

The invention provides an image shadow removal model construction method and device and application, and the method comprises the following steps: obtaining a training sample, and carrying out the preprocessing of the training sample, and obtaining a pre-screened shadow image and a shadow mask; enco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DONG MOJIANG, ZHANG XIANGWEI, LEE SUNG-KWON, LI ZHIHANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DONG MOJIANG
ZHANG XIANGWEI
LEE SUNG-KWON
LI ZHIHANG
description The invention provides an image shadow removal model construction method and device and application, and the method comprises the following steps: obtaining a training sample, and carrying out the preprocessing of the training sample, and obtaining a pre-screened shadow image and a shadow mask; encoding by using a first encoder and a second encoder to obtain a first encoding result and a second encoding result; adding position information to the first coding result and the second coding result by using a cross-region Transform layer, and then sending the first coding result and the second coding result into a region perception cross attention layer to obtain a shadow feature map; and using a RefineNet network to perform coding and decoding by taking the original image, the pre-screened shadow image and the shadow feature map as input to obtain a shadow removal result map corresponding to the original image. According to the scheme, the cross-region Transform layer and the region perception cross attention lay
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115375589A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115375589A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115375589A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEuDqK-w3XXoZSgjlIUXRzEvVySv20gyQ1JrK8vFB_A6QzfWVbPu-cBlEc28qEELxM78mLgiIMhLSGX9NbFSiCPMorZkcFkNWbnGJ3VPHMZkSD9ulr07DI2v66q7fXyam97ROmQI2sElK591LVqDkodT-fmn-cLGBY4MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image shadow removal model and construction method, device and application thereof</title><source>esp@cenet</source><creator>DONG MOJIANG ; ZHANG XIANGWEI ; LEE SUNG-KWON ; LI ZHIHANG</creator><creatorcontrib>DONG MOJIANG ; ZHANG XIANGWEI ; LEE SUNG-KWON ; LI ZHIHANG</creatorcontrib><description>The invention provides an image shadow removal model construction method and device and application, and the method comprises the following steps: obtaining a training sample, and carrying out the preprocessing of the training sample, and obtaining a pre-screened shadow image and a shadow mask; encoding by using a first encoder and a second encoder to obtain a first encoding result and a second encoding result; adding position information to the first coding result and the second coding result by using a cross-region Transform layer, and then sending the first coding result and the second coding result into a region perception cross attention layer to obtain a shadow feature map; and using a RefineNet network to perform coding and decoding by taking the original image, the pre-screened shadow image and the shadow feature map as input to obtain a shadow removal result map corresponding to the original image. According to the scheme, the cross-region Transform layer and the region perception cross attention lay</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221122&amp;DB=EPODOC&amp;CC=CN&amp;NR=115375589A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221122&amp;DB=EPODOC&amp;CC=CN&amp;NR=115375589A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DONG MOJIANG</creatorcontrib><creatorcontrib>ZHANG XIANGWEI</creatorcontrib><creatorcontrib>LEE SUNG-KWON</creatorcontrib><creatorcontrib>LI ZHIHANG</creatorcontrib><title>Image shadow removal model and construction method, device and application thereof</title><description>The invention provides an image shadow removal model construction method and device and application, and the method comprises the following steps: obtaining a training sample, and carrying out the preprocessing of the training sample, and obtaining a pre-screened shadow image and a shadow mask; encoding by using a first encoder and a second encoder to obtain a first encoding result and a second encoding result; adding position information to the first coding result and the second coding result by using a cross-region Transform layer, and then sending the first coding result and the second coding result into a region perception cross attention layer to obtain a shadow feature map; and using a RefineNet network to perform coding and decoding by taking the original image, the pre-screened shadow image and the shadow feature map as input to obtain a shadow removal result map corresponding to the original image. According to the scheme, the cross-region Transform layer and the region perception cross attention lay</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEuDqK-w3XXoZSgjlIUXRzEvVySv20gyQ1JrK8vFB_A6QzfWVbPu-cBlEc28qEELxM78mLgiIMhLSGX9NbFSiCPMorZkcFkNWbnGJ3VPHMZkSD9ulr07DI2v66q7fXyam97ROmQI2sElK591LVqDkodT-fmn-cLGBY4MA</recordid><startdate>20221122</startdate><enddate>20221122</enddate><creator>DONG MOJIANG</creator><creator>ZHANG XIANGWEI</creator><creator>LEE SUNG-KWON</creator><creator>LI ZHIHANG</creator><scope>EVB</scope></search><sort><creationdate>20221122</creationdate><title>Image shadow removal model and construction method, device and application thereof</title><author>DONG MOJIANG ; ZHANG XIANGWEI ; LEE SUNG-KWON ; LI ZHIHANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115375589A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DONG MOJIANG</creatorcontrib><creatorcontrib>ZHANG XIANGWEI</creatorcontrib><creatorcontrib>LEE SUNG-KWON</creatorcontrib><creatorcontrib>LI ZHIHANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DONG MOJIANG</au><au>ZHANG XIANGWEI</au><au>LEE SUNG-KWON</au><au>LI ZHIHANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image shadow removal model and construction method, device and application thereof</title><date>2022-11-22</date><risdate>2022</risdate><abstract>The invention provides an image shadow removal model construction method and device and application, and the method comprises the following steps: obtaining a training sample, and carrying out the preprocessing of the training sample, and obtaining a pre-screened shadow image and a shadow mask; encoding by using a first encoder and a second encoder to obtain a first encoding result and a second encoding result; adding position information to the first coding result and the second coding result by using a cross-region Transform layer, and then sending the first coding result and the second coding result into a region perception cross attention layer to obtain a shadow feature map; and using a RefineNet network to perform coding and decoding by taking the original image, the pre-screened shadow image and the shadow feature map as input to obtain a shadow removal result map corresponding to the original image. According to the scheme, the cross-region Transform layer and the region perception cross attention lay</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115375589A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Image shadow removal model and construction method, device and application thereof
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DONG%20MOJIANG&rft.date=2022-11-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115375589A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true