Federal learning aggregation optimization system and method for power data sharing
The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comp...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIN XIAOPENG LIU XIANTONG LIU ZIZHOU LIU WEI ZHANG LEI CHENG KAI CHEN LIANDONG SHEN PEIPEI ZHAO LINCONG GUO SHAOYONG |
description | The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comprises electric power Internet of Things equipment and is used for collecting electric power data of a target client, establishing a layered federal learning model and carrying out local model training; the power data and the local model training parameters are sent to an edge layer; the edge layer comprises an edge server and is used for updating an edge model by adopting a fuzzy clustering method based on local model training parameters; sending the power data and the edge model to the cloud layer; and the cloud layer comprises a parameter server which is used for updating a global model by an asynchronous updating mechanism of outdated perception according to the power data and the parameters of the edge model. A |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115358487A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115358487A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115358487A3</originalsourceid><addsrcrecordid>eNqNjMEKwjAQBXvxIOo_rB_godRir1IsnjyI97KY1zSQZEOyIPr1CvoBnoaBYZbVdYBBZk8enKOLltjaDMvqJJIkdcG9vlKeRRGIo6EAncXQJJmSPJDJsDKVmfPnsK4WE_uCzY-rajucbv15hyQjSuI7InTsL3XdNm237w7H5p_mDVkuOJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Federal learning aggregation optimization system and method for power data sharing</title><source>esp@cenet</source><creator>XIN XIAOPENG ; LIU XIANTONG ; LIU ZIZHOU ; LIU WEI ; ZHANG LEI ; CHENG KAI ; CHEN LIANDONG ; SHEN PEIPEI ; ZHAO LINCONG ; GUO SHAOYONG</creator><creatorcontrib>XIN XIAOPENG ; LIU XIANTONG ; LIU ZIZHOU ; LIU WEI ; ZHANG LEI ; CHENG KAI ; CHEN LIANDONG ; SHEN PEIPEI ; ZHAO LINCONG ; GUO SHAOYONG</creatorcontrib><description>The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comprises electric power Internet of Things equipment and is used for collecting electric power data of a target client, establishing a layered federal learning model and carrying out local model training; the power data and the local model training parameters are sent to an edge layer; the edge layer comprises an edge server and is used for updating an edge model by adopting a fuzzy clustering method based on local model training parameters; sending the power data and the edge model to the cloud layer; and the cloud layer comprises a parameter server which is used for updating a global model by an asynchronous updating mechanism of outdated perception according to the power data and the parameters of the edge model. A</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221118&DB=EPODOC&CC=CN&NR=115358487A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221118&DB=EPODOC&CC=CN&NR=115358487A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIN XIAOPENG</creatorcontrib><creatorcontrib>LIU XIANTONG</creatorcontrib><creatorcontrib>LIU ZIZHOU</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>CHENG KAI</creatorcontrib><creatorcontrib>CHEN LIANDONG</creatorcontrib><creatorcontrib>SHEN PEIPEI</creatorcontrib><creatorcontrib>ZHAO LINCONG</creatorcontrib><creatorcontrib>GUO SHAOYONG</creatorcontrib><title>Federal learning aggregation optimization system and method for power data sharing</title><description>The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comprises electric power Internet of Things equipment and is used for collecting electric power data of a target client, establishing a layered federal learning model and carrying out local model training; the power data and the local model training parameters are sent to an edge layer; the edge layer comprises an edge server and is used for updating an edge model by adopting a fuzzy clustering method based on local model training parameters; sending the power data and the edge model to the cloud layer; and the cloud layer comprises a parameter server which is used for updating a global model by an asynchronous updating mechanism of outdated perception according to the power data and the parameters of the edge model. A</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMEKwjAQBXvxIOo_rB_godRir1IsnjyI97KY1zSQZEOyIPr1CvoBnoaBYZbVdYBBZk8enKOLltjaDMvqJJIkdcG9vlKeRRGIo6EAncXQJJmSPJDJsDKVmfPnsK4WE_uCzY-rajucbv15hyQjSuI7InTsL3XdNm237w7H5p_mDVkuOJI</recordid><startdate>20221118</startdate><enddate>20221118</enddate><creator>XIN XIAOPENG</creator><creator>LIU XIANTONG</creator><creator>LIU ZIZHOU</creator><creator>LIU WEI</creator><creator>ZHANG LEI</creator><creator>CHENG KAI</creator><creator>CHEN LIANDONG</creator><creator>SHEN PEIPEI</creator><creator>ZHAO LINCONG</creator><creator>GUO SHAOYONG</creator><scope>EVB</scope></search><sort><creationdate>20221118</creationdate><title>Federal learning aggregation optimization system and method for power data sharing</title><author>XIN XIAOPENG ; LIU XIANTONG ; LIU ZIZHOU ; LIU WEI ; ZHANG LEI ; CHENG KAI ; CHEN LIANDONG ; SHEN PEIPEI ; ZHAO LINCONG ; GUO SHAOYONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115358487A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIN XIAOPENG</creatorcontrib><creatorcontrib>LIU XIANTONG</creatorcontrib><creatorcontrib>LIU ZIZHOU</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>CHENG KAI</creatorcontrib><creatorcontrib>CHEN LIANDONG</creatorcontrib><creatorcontrib>SHEN PEIPEI</creatorcontrib><creatorcontrib>ZHAO LINCONG</creatorcontrib><creatorcontrib>GUO SHAOYONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIN XIAOPENG</au><au>LIU XIANTONG</au><au>LIU ZIZHOU</au><au>LIU WEI</au><au>ZHANG LEI</au><au>CHENG KAI</au><au>CHEN LIANDONG</au><au>SHEN PEIPEI</au><au>ZHAO LINCONG</au><au>GUO SHAOYONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Federal learning aggregation optimization system and method for power data sharing</title><date>2022-11-18</date><risdate>2022</risdate><abstract>The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comprises electric power Internet of Things equipment and is used for collecting electric power data of a target client, establishing a layered federal learning model and carrying out local model training; the power data and the local model training parameters are sent to an edge layer; the edge layer comprises an edge server and is used for updating an edge model by adopting a fuzzy clustering method based on local model training parameters; sending the power data and the edge model to the cloud layer; and the cloud layer comprises a parameter server which is used for updating a global model by an asynchronous updating mechanism of outdated perception according to the power data and the parameters of the edge model. A</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115358487A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Federal learning aggregation optimization system and method for power data sharing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIN%20XIAOPENG&rft.date=2022-11-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115358487A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |