Federal learning aggregation optimization system and method for power data sharing

The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIN XIAOPENG, LIU XIANTONG, LIU ZIZHOU, LIU WEI, ZHANG LEI, CHENG KAI, CHEN LIANDONG, SHEN PEIPEI, ZHAO LINCONG, GUO SHAOYONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIN XIAOPENG
LIU XIANTONG
LIU ZIZHOU
LIU WEI
ZHANG LEI
CHENG KAI
CHEN LIANDONG
SHEN PEIPEI
ZHAO LINCONG
GUO SHAOYONG
description The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comprises electric power Internet of Things equipment and is used for collecting electric power data of a target client, establishing a layered federal learning model and carrying out local model training; the power data and the local model training parameters are sent to an edge layer; the edge layer comprises an edge server and is used for updating an edge model by adopting a fuzzy clustering method based on local model training parameters; sending the power data and the edge model to the cloud layer; and the cloud layer comprises a parameter server which is used for updating a global model by an asynchronous updating mechanism of outdated perception according to the power data and the parameters of the edge model. A
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115358487A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115358487A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115358487A3</originalsourceid><addsrcrecordid>eNqNjMEKwjAQBXvxIOo_rB_godRir1IsnjyI97KY1zSQZEOyIPr1CvoBnoaBYZbVdYBBZk8enKOLltjaDMvqJJIkdcG9vlKeRRGIo6EAncXQJJmSPJDJsDKVmfPnsK4WE_uCzY-rajucbv15hyQjSuI7InTsL3XdNm237w7H5p_mDVkuOJI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Federal learning aggregation optimization system and method for power data sharing</title><source>esp@cenet</source><creator>XIN XIAOPENG ; LIU XIANTONG ; LIU ZIZHOU ; LIU WEI ; ZHANG LEI ; CHENG KAI ; CHEN LIANDONG ; SHEN PEIPEI ; ZHAO LINCONG ; GUO SHAOYONG</creator><creatorcontrib>XIN XIAOPENG ; LIU XIANTONG ; LIU ZIZHOU ; LIU WEI ; ZHANG LEI ; CHENG KAI ; CHEN LIANDONG ; SHEN PEIPEI ; ZHAO LINCONG ; GUO SHAOYONG</creatorcontrib><description>The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comprises electric power Internet of Things equipment and is used for collecting electric power data of a target client, establishing a layered federal learning model and carrying out local model training; the power data and the local model training parameters are sent to an edge layer; the edge layer comprises an edge server and is used for updating an edge model by adopting a fuzzy clustering method based on local model training parameters; sending the power data and the edge model to the cloud layer; and the cloud layer comprises a parameter server which is used for updating a global model by an asynchronous updating mechanism of outdated perception according to the power data and the parameters of the edge model. A</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221118&amp;DB=EPODOC&amp;CC=CN&amp;NR=115358487A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221118&amp;DB=EPODOC&amp;CC=CN&amp;NR=115358487A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIN XIAOPENG</creatorcontrib><creatorcontrib>LIU XIANTONG</creatorcontrib><creatorcontrib>LIU ZIZHOU</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>CHENG KAI</creatorcontrib><creatorcontrib>CHEN LIANDONG</creatorcontrib><creatorcontrib>SHEN PEIPEI</creatorcontrib><creatorcontrib>ZHAO LINCONG</creatorcontrib><creatorcontrib>GUO SHAOYONG</creatorcontrib><title>Federal learning aggregation optimization system and method for power data sharing</title><description>The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comprises electric power Internet of Things equipment and is used for collecting electric power data of a target client, establishing a layered federal learning model and carrying out local model training; the power data and the local model training parameters are sent to an edge layer; the edge layer comprises an edge server and is used for updating an edge model by adopting a fuzzy clustering method based on local model training parameters; sending the power data and the edge model to the cloud layer; and the cloud layer comprises a parameter server which is used for updating a global model by an asynchronous updating mechanism of outdated perception according to the power data and the parameters of the edge model. A</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMEKwjAQBXvxIOo_rB_godRir1IsnjyI97KY1zSQZEOyIPr1CvoBnoaBYZbVdYBBZk8enKOLltjaDMvqJJIkdcG9vlKeRRGIo6EAncXQJJmSPJDJsDKVmfPnsK4WE_uCzY-rajucbv15hyQjSuI7InTsL3XdNm237w7H5p_mDVkuOJI</recordid><startdate>20221118</startdate><enddate>20221118</enddate><creator>XIN XIAOPENG</creator><creator>LIU XIANTONG</creator><creator>LIU ZIZHOU</creator><creator>LIU WEI</creator><creator>ZHANG LEI</creator><creator>CHENG KAI</creator><creator>CHEN LIANDONG</creator><creator>SHEN PEIPEI</creator><creator>ZHAO LINCONG</creator><creator>GUO SHAOYONG</creator><scope>EVB</scope></search><sort><creationdate>20221118</creationdate><title>Federal learning aggregation optimization system and method for power data sharing</title><author>XIN XIAOPENG ; LIU XIANTONG ; LIU ZIZHOU ; LIU WEI ; ZHANG LEI ; CHENG KAI ; CHEN LIANDONG ; SHEN PEIPEI ; ZHAO LINCONG ; GUO SHAOYONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115358487A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIN XIAOPENG</creatorcontrib><creatorcontrib>LIU XIANTONG</creatorcontrib><creatorcontrib>LIU ZIZHOU</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>CHENG KAI</creatorcontrib><creatorcontrib>CHEN LIANDONG</creatorcontrib><creatorcontrib>SHEN PEIPEI</creatorcontrib><creatorcontrib>ZHAO LINCONG</creatorcontrib><creatorcontrib>GUO SHAOYONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIN XIAOPENG</au><au>LIU XIANTONG</au><au>LIU ZIZHOU</au><au>LIU WEI</au><au>ZHANG LEI</au><au>CHENG KAI</au><au>CHEN LIANDONG</au><au>SHEN PEIPEI</au><au>ZHAO LINCONG</au><au>GUO SHAOYONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Federal learning aggregation optimization system and method for power data sharing</title><date>2022-11-18</date><risdate>2022</risdate><abstract>The invention is suitable for the technical field of electric power data sharing, and provides an electric power data sharing-oriented federated learning aggregation optimization system and method, and the system comprises an equipment layer, an edge layer and a cloud layer. The equipment layer comprises electric power Internet of Things equipment and is used for collecting electric power data of a target client, establishing a layered federal learning model and carrying out local model training; the power data and the local model training parameters are sent to an edge layer; the edge layer comprises an edge server and is used for updating an edge model by adopting a fuzzy clustering method based on local model training parameters; sending the power data and the edge model to the cloud layer; and the cloud layer comprises a parameter server which is used for updating a global model by an asynchronous updating mechanism of outdated perception according to the power data and the parameters of the edge model. A</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115358487A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Federal learning aggregation optimization system and method for power data sharing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIN%20XIAOPENG&rft.date=2022-11-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115358487A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true