Road surface hidden spalling point detection method and system based on depth image recognition
The invention discloses a pavement hidden peeling point detection method and system based on depth image recognition, and the method comprises the following steps: S1, collecting a pavement image in a wet state, and defining a region with a prominent shadow in the pavement image as a hidden peeling...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GAO ZHIMING NIE CHANGJUN LIU XIAOJIAN LI ALEI ZANG JICHENG YU XUNHAI CUI MENG QIU NIANLING |
description | The invention discloses a pavement hidden peeling point detection method and system based on depth image recognition, and the method comprises the following steps: S1, collecting a pavement image in a wet state, and defining a region with a prominent shadow in the pavement image as a hidden peeling point; s2, carrying out noise elimination preprocessing on the acquired pavement image; s3, marking hidden peeling points for the preprocessed pavement image; s4, learning the pavement image marked with the hidden spalling points by adopting a deep learning framework, and further constructing a pavement hidden spalling point detection model; and S5, using the pavement hidden peeling point detection model to perform hidden peeling point identification on the pavement image of which the hidden peeling points are not marked. Based on the idea of recognizing the initial state of pavement damage in a specific environment, an image recognition technology in a deep learning technology is adopted to recognize the hidden sp |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115330752A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115330752A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115330752A3</originalsourceid><addsrcrecordid>eNqNjTEKwkAQRdNYiHqH8QCCMQRrCYqVhdiHcecnu5DMLtmx8PZG8ABWv3jv8ZdFe48slF9Txw7kgwiUcuJhCNpTikGNBAZnISqNMB-FWOfknQ0jPTlDaEaCZJ7CyD1ogou9hm-yLhYdDxmb366K7eX8aK47pNhiPnJQWNvcyrKuqv2xPpyqf5wPec086A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Road surface hidden spalling point detection method and system based on depth image recognition</title><source>esp@cenet</source><creator>GAO ZHIMING ; NIE CHANGJUN ; LIU XIAOJIAN ; LI ALEI ; ZANG JICHENG ; YU XUNHAI ; CUI MENG ; QIU NIANLING</creator><creatorcontrib>GAO ZHIMING ; NIE CHANGJUN ; LIU XIAOJIAN ; LI ALEI ; ZANG JICHENG ; YU XUNHAI ; CUI MENG ; QIU NIANLING</creatorcontrib><description>The invention discloses a pavement hidden peeling point detection method and system based on depth image recognition, and the method comprises the following steps: S1, collecting a pavement image in a wet state, and defining a region with a prominent shadow in the pavement image as a hidden peeling point; s2, carrying out noise elimination preprocessing on the acquired pavement image; s3, marking hidden peeling points for the preprocessed pavement image; s4, learning the pavement image marked with the hidden spalling points by adopting a deep learning framework, and further constructing a pavement hidden spalling point detection model; and S5, using the pavement hidden peeling point detection model to perform hidden peeling point identification on the pavement image of which the hidden peeling points are not marked. Based on the idea of recognizing the initial state of pavement damage in a specific environment, an image recognition technology in a deep learning technology is adopted to recognize the hidden sp</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221111&DB=EPODOC&CC=CN&NR=115330752A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221111&DB=EPODOC&CC=CN&NR=115330752A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GAO ZHIMING</creatorcontrib><creatorcontrib>NIE CHANGJUN</creatorcontrib><creatorcontrib>LIU XIAOJIAN</creatorcontrib><creatorcontrib>LI ALEI</creatorcontrib><creatorcontrib>ZANG JICHENG</creatorcontrib><creatorcontrib>YU XUNHAI</creatorcontrib><creatorcontrib>CUI MENG</creatorcontrib><creatorcontrib>QIU NIANLING</creatorcontrib><title>Road surface hidden spalling point detection method and system based on depth image recognition</title><description>The invention discloses a pavement hidden peeling point detection method and system based on depth image recognition, and the method comprises the following steps: S1, collecting a pavement image in a wet state, and defining a region with a prominent shadow in the pavement image as a hidden peeling point; s2, carrying out noise elimination preprocessing on the acquired pavement image; s3, marking hidden peeling points for the preprocessed pavement image; s4, learning the pavement image marked with the hidden spalling points by adopting a deep learning framework, and further constructing a pavement hidden spalling point detection model; and S5, using the pavement hidden peeling point detection model to perform hidden peeling point identification on the pavement image of which the hidden peeling points are not marked. Based on the idea of recognizing the initial state of pavement damage in a specific environment, an image recognition technology in a deep learning technology is adopted to recognize the hidden sp</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKwkAQRdNYiHqH8QCCMQRrCYqVhdiHcecnu5DMLtmx8PZG8ABWv3jv8ZdFe48slF9Txw7kgwiUcuJhCNpTikGNBAZnISqNMB-FWOfknQ0jPTlDaEaCZJ7CyD1ogou9hm-yLhYdDxmb366K7eX8aK47pNhiPnJQWNvcyrKuqv2xPpyqf5wPec086A</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>GAO ZHIMING</creator><creator>NIE CHANGJUN</creator><creator>LIU XIAOJIAN</creator><creator>LI ALEI</creator><creator>ZANG JICHENG</creator><creator>YU XUNHAI</creator><creator>CUI MENG</creator><creator>QIU NIANLING</creator><scope>EVB</scope></search><sort><creationdate>20221111</creationdate><title>Road surface hidden spalling point detection method and system based on depth image recognition</title><author>GAO ZHIMING ; NIE CHANGJUN ; LIU XIAOJIAN ; LI ALEI ; ZANG JICHENG ; YU XUNHAI ; CUI MENG ; QIU NIANLING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115330752A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GAO ZHIMING</creatorcontrib><creatorcontrib>NIE CHANGJUN</creatorcontrib><creatorcontrib>LIU XIAOJIAN</creatorcontrib><creatorcontrib>LI ALEI</creatorcontrib><creatorcontrib>ZANG JICHENG</creatorcontrib><creatorcontrib>YU XUNHAI</creatorcontrib><creatorcontrib>CUI MENG</creatorcontrib><creatorcontrib>QIU NIANLING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GAO ZHIMING</au><au>NIE CHANGJUN</au><au>LIU XIAOJIAN</au><au>LI ALEI</au><au>ZANG JICHENG</au><au>YU XUNHAI</au><au>CUI MENG</au><au>QIU NIANLING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Road surface hidden spalling point detection method and system based on depth image recognition</title><date>2022-11-11</date><risdate>2022</risdate><abstract>The invention discloses a pavement hidden peeling point detection method and system based on depth image recognition, and the method comprises the following steps: S1, collecting a pavement image in a wet state, and defining a region with a prominent shadow in the pavement image as a hidden peeling point; s2, carrying out noise elimination preprocessing on the acquired pavement image; s3, marking hidden peeling points for the preprocessed pavement image; s4, learning the pavement image marked with the hidden spalling points by adopting a deep learning framework, and further constructing a pavement hidden spalling point detection model; and S5, using the pavement hidden peeling point detection model to perform hidden peeling point identification on the pavement image of which the hidden peeling points are not marked. Based on the idea of recognizing the initial state of pavement damage in a specific environment, an image recognition technology in a deep learning technology is adopted to recognize the hidden sp</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115330752A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Road surface hidden spalling point detection method and system based on depth image recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GAO%20ZHIMING&rft.date=2022-11-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115330752A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |