Rice plant counting, positioning and size estimating method based on DPS-Net deep learning
The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density e...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GU SUSONG DANG PEINA ZHAO LAIDING BAI XIAODONG LIU PICHAO |
description | The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density estimation module, the attention map is fused with the initial density map based on a positive and negative loss function to generate a high-quality density map, and all pixel values of the high-quality density map are added to obtain the number of plants; in a plant position detection module, a non-maximum suppression algorithm is combined with the high-quality density map to generate coordinates of a plant position; in the plant size estimation module, the size of the plant is estimated by fusing the output of the module network structure with the plant position coordinates; a new high-throughput rice plant counting data set is utilized to prove that the method can realize automatic, non-contact and accurate count |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115330747A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115330747A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115330747A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoPa2_AECW1RMUqiFrZhPXuRQ8ue4e3Nn69BvwAq2FgZpxdT86AomdRMuEl6uS-oBiSUxfkK8RiKbk3CEldz0NAPfQRLN04wVIQ2h7PeQMlC0Ty4OdwTrNRxz5h9uMkm-93l_qQI4YWKbKBQNu6KYp1WS6rVbUp_2k-2To6UA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rice plant counting, positioning and size estimating method based on DPS-Net deep learning</title><source>esp@cenet</source><creator>GU SUSONG ; DANG PEINA ; ZHAO LAIDING ; BAI XIAODONG ; LIU PICHAO</creator><creatorcontrib>GU SUSONG ; DANG PEINA ; ZHAO LAIDING ; BAI XIAODONG ; LIU PICHAO</creatorcontrib><description>The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density estimation module, the attention map is fused with the initial density map based on a positive and negative loss function to generate a high-quality density map, and all pixel values of the high-quality density map are added to obtain the number of plants; in a plant position detection module, a non-maximum suppression algorithm is combined with the high-quality density map to generate coordinates of a plant position; in the plant size estimation module, the size of the plant is estimated by fusing the output of the module network structure with the plant position coordinates; a new high-throughput rice plant counting data set is utilized to prove that the method can realize automatic, non-contact and accurate count</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221111&DB=EPODOC&CC=CN&NR=115330747A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221111&DB=EPODOC&CC=CN&NR=115330747A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GU SUSONG</creatorcontrib><creatorcontrib>DANG PEINA</creatorcontrib><creatorcontrib>ZHAO LAIDING</creatorcontrib><creatorcontrib>BAI XIAODONG</creatorcontrib><creatorcontrib>LIU PICHAO</creatorcontrib><title>Rice plant counting, positioning and size estimating method based on DPS-Net deep learning</title><description>The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density estimation module, the attention map is fused with the initial density map based on a positive and negative loss function to generate a high-quality density map, and all pixel values of the high-quality density map are added to obtain the number of plants; in a plant position detection module, a non-maximum suppression algorithm is combined with the high-quality density map to generate coordinates of a plant position; in the plant size estimation module, the size of the plant is estimated by fusing the output of the module network structure with the plant position coordinates; a new high-throughput rice plant counting data set is utilized to prove that the method can realize automatic, non-contact and accurate count</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoPa2_AECW1RMUqiFrZhPXuRQ8ue4e3Nn69BvwAq2FgZpxdT86AomdRMuEl6uS-oBiSUxfkK8RiKbk3CEldz0NAPfQRLN04wVIQ2h7PeQMlC0Ty4OdwTrNRxz5h9uMkm-93l_qQI4YWKbKBQNu6KYp1WS6rVbUp_2k-2To6UA</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>GU SUSONG</creator><creator>DANG PEINA</creator><creator>ZHAO LAIDING</creator><creator>BAI XIAODONG</creator><creator>LIU PICHAO</creator><scope>EVB</scope></search><sort><creationdate>20221111</creationdate><title>Rice plant counting, positioning and size estimating method based on DPS-Net deep learning</title><author>GU SUSONG ; DANG PEINA ; ZHAO LAIDING ; BAI XIAODONG ; LIU PICHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115330747A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GU SUSONG</creatorcontrib><creatorcontrib>DANG PEINA</creatorcontrib><creatorcontrib>ZHAO LAIDING</creatorcontrib><creatorcontrib>BAI XIAODONG</creatorcontrib><creatorcontrib>LIU PICHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GU SUSONG</au><au>DANG PEINA</au><au>ZHAO LAIDING</au><au>BAI XIAODONG</au><au>LIU PICHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rice plant counting, positioning and size estimating method based on DPS-Net deep learning</title><date>2022-11-11</date><risdate>2022</risdate><abstract>The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density estimation module, the attention map is fused with the initial density map based on a positive and negative loss function to generate a high-quality density map, and all pixel values of the high-quality density map are added to obtain the number of plants; in a plant position detection module, a non-maximum suppression algorithm is combined with the high-quality density map to generate coordinates of a plant position; in the plant size estimation module, the size of the plant is estimated by fusing the output of the module network structure with the plant position coordinates; a new high-throughput rice plant counting data set is utilized to prove that the method can realize automatic, non-contact and accurate count</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115330747A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Rice plant counting, positioning and size estimating method based on DPS-Net deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GU%20SUSONG&rft.date=2022-11-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115330747A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |