Rice plant counting, positioning and size estimating method based on DPS-Net deep learning

The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GU SUSONG, DANG PEINA, ZHAO LAIDING, BAI XIAODONG, LIU PICHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GU SUSONG
DANG PEINA
ZHAO LAIDING
BAI XIAODONG
LIU PICHAO
description The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density estimation module, the attention map is fused with the initial density map based on a positive and negative loss function to generate a high-quality density map, and all pixel values of the high-quality density map are added to obtain the number of plants; in a plant position detection module, a non-maximum suppression algorithm is combined with the high-quality density map to generate coordinates of a plant position; in the plant size estimation module, the size of the plant is estimated by fusing the output of the module network structure with the plant position coordinates; a new high-throughput rice plant counting data set is utilized to prove that the method can realize automatic, non-contact and accurate count
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115330747A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115330747A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115330747A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoPa2_AECW1RMUqiFrZhPXuRQ8ue4e3Nn69BvwAq2FgZpxdT86AomdRMuEl6uS-oBiSUxfkK8RiKbk3CEldz0NAPfQRLN04wVIQ2h7PeQMlC0Ty4OdwTrNRxz5h9uMkm-93l_qQI4YWKbKBQNu6KYp1WS6rVbUp_2k-2To6UA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rice plant counting, positioning and size estimating method based on DPS-Net deep learning</title><source>esp@cenet</source><creator>GU SUSONG ; DANG PEINA ; ZHAO LAIDING ; BAI XIAODONG ; LIU PICHAO</creator><creatorcontrib>GU SUSONG ; DANG PEINA ; ZHAO LAIDING ; BAI XIAODONG ; LIU PICHAO</creatorcontrib><description>The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density estimation module, the attention map is fused with the initial density map based on a positive and negative loss function to generate a high-quality density map, and all pixel values of the high-quality density map are added to obtain the number of plants; in a plant position detection module, a non-maximum suppression algorithm is combined with the high-quality density map to generate coordinates of a plant position; in the plant size estimation module, the size of the plant is estimated by fusing the output of the module network structure with the plant position coordinates; a new high-throughput rice plant counting data set is utilized to prove that the method can realize automatic, non-contact and accurate count</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221111&amp;DB=EPODOC&amp;CC=CN&amp;NR=115330747A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221111&amp;DB=EPODOC&amp;CC=CN&amp;NR=115330747A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GU SUSONG</creatorcontrib><creatorcontrib>DANG PEINA</creatorcontrib><creatorcontrib>ZHAO LAIDING</creatorcontrib><creatorcontrib>BAI XIAODONG</creatorcontrib><creatorcontrib>LIU PICHAO</creatorcontrib><title>Rice plant counting, positioning and size estimating method based on DPS-Net deep learning</title><description>The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density estimation module, the attention map is fused with the initial density map based on a positive and negative loss function to generate a high-quality density map, and all pixel values of the high-quality density map are added to obtain the number of plants; in a plant position detection module, a non-maximum suppression algorithm is combined with the high-quality density map to generate coordinates of a plant position; in the plant size estimation module, the size of the plant is estimated by fusing the output of the module network structure with the plant position coordinates; a new high-throughput rice plant counting data set is utilized to prove that the method can realize automatic, non-contact and accurate count</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoPa2_AECW1RMUqiFrZhPXuRQ8ue4e3Nn69BvwAq2FgZpxdT86AomdRMuEl6uS-oBiSUxfkK8RiKbk3CEldz0NAPfQRLN04wVIQ2h7PeQMlC0Ty4OdwTrNRxz5h9uMkm-93l_qQI4YWKbKBQNu6KYp1WS6rVbUp_2k-2To6UA</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>GU SUSONG</creator><creator>DANG PEINA</creator><creator>ZHAO LAIDING</creator><creator>BAI XIAODONG</creator><creator>LIU PICHAO</creator><scope>EVB</scope></search><sort><creationdate>20221111</creationdate><title>Rice plant counting, positioning and size estimating method based on DPS-Net deep learning</title><author>GU SUSONG ; DANG PEINA ; ZHAO LAIDING ; BAI XIAODONG ; LIU PICHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115330747A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GU SUSONG</creatorcontrib><creatorcontrib>DANG PEINA</creatorcontrib><creatorcontrib>ZHAO LAIDING</creatorcontrib><creatorcontrib>BAI XIAODONG</creatorcontrib><creatorcontrib>LIU PICHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GU SUSONG</au><au>DANG PEINA</au><au>ZHAO LAIDING</au><au>BAI XIAODONG</au><au>LIU PICHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rice plant counting, positioning and size estimating method based on DPS-Net deep learning</title><date>2022-11-11</date><risdate>2022</risdate><abstract>The invention discloses a DPS-Net deep learning-based rice plant counting, positioning and size estimation method. The method comprises the following steps of: inputting an original image of a rice field into a feature extractor, and extracting four feature maps with different scales; in a density estimation module, the attention map is fused with the initial density map based on a positive and negative loss function to generate a high-quality density map, and all pixel values of the high-quality density map are added to obtain the number of plants; in a plant position detection module, a non-maximum suppression algorithm is combined with the high-quality density map to generate coordinates of a plant position; in the plant size estimation module, the size of the plant is estimated by fusing the output of the module network structure with the plant position coordinates; a new high-throughput rice plant counting data set is utilized to prove that the method can realize automatic, non-contact and accurate count</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115330747A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Rice plant counting, positioning and size estimating method based on DPS-Net deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GU%20SUSONG&rft.date=2022-11-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115330747A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true