Urban inland inundation ponding distribution rapid prediction method based on improved convolutional neural network

The invention relates to an improved convolutional neural network-based urban inland inundation ponding distribution rapid prediction method, which comprises the steps of 1, constructing a rapid prediction model data set: the data set is an inland inundation influence factor-inland inundation charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PAN HAO, ZHUANG YUNCHAO, BIN LINGLING, XU KUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PAN HAO
ZHUANG YUNCHAO
BIN LINGLING
XU KUI
description The invention relates to an improved convolutional neural network-based urban inland inundation ponding distribution rapid prediction method, which comprises the steps of 1, constructing a rapid prediction model data set: the data set is an inland inundation influence factor-inland inundation characterization factor data set, and the inland inundation influence factors comprise a rainfall factor, a terrain factor, a pipe network length factor and a river system distance factor; 2, building a rapid prediction model based on a convolutional neural network, carrying out training and testing, in the model building process, carrying out independent coding on different forms of waterlogging influence factors, then carrying out fusion, and finally carrying out decoding after fusion; in the training and testing process, an improved design loss function is adopted; and 3, performing model prediction and model prediction result analysis. According to the method, direct conversion of rainfall and flood elements (inundat
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115329656A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115329656A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115329656A3</originalsourceid><addsrcrecordid>eNqNizEOwjAQBNNQIOAP5gEUIUokShSBqKigji65A044d5bthO9jWTyAanZHu8si3H0PYlgsCCZMghBZxTgVZHka5BA991OWHhyjcZ6QhyxGii9F00MgNKnz6LzOKQ8qs9r8AmuEJp8RP-rf62LxABto8-Oq2J5Pt_ayI6cdBQcDpWXXXsuyrvaHpm6O1T-bL_QaRd4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Urban inland inundation ponding distribution rapid prediction method based on improved convolutional neural network</title><source>esp@cenet</source><creator>PAN HAO ; ZHUANG YUNCHAO ; BIN LINGLING ; XU KUI</creator><creatorcontrib>PAN HAO ; ZHUANG YUNCHAO ; BIN LINGLING ; XU KUI</creatorcontrib><description>The invention relates to an improved convolutional neural network-based urban inland inundation ponding distribution rapid prediction method, which comprises the steps of 1, constructing a rapid prediction model data set: the data set is an inland inundation influence factor-inland inundation characterization factor data set, and the inland inundation influence factors comprise a rainfall factor, a terrain factor, a pipe network length factor and a river system distance factor; 2, building a rapid prediction model based on a convolutional neural network, carrying out training and testing, in the model building process, carrying out independent coding on different forms of waterlogging influence factors, then carrying out fusion, and finally carrying out decoding after fusion; in the training and testing process, an improved design loss function is adopted; and 3, performing model prediction and model prediction result analysis. According to the method, direct conversion of rainfall and flood elements (inundat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221111&amp;DB=EPODOC&amp;CC=CN&amp;NR=115329656A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221111&amp;DB=EPODOC&amp;CC=CN&amp;NR=115329656A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PAN HAO</creatorcontrib><creatorcontrib>ZHUANG YUNCHAO</creatorcontrib><creatorcontrib>BIN LINGLING</creatorcontrib><creatorcontrib>XU KUI</creatorcontrib><title>Urban inland inundation ponding distribution rapid prediction method based on improved convolutional neural network</title><description>The invention relates to an improved convolutional neural network-based urban inland inundation ponding distribution rapid prediction method, which comprises the steps of 1, constructing a rapid prediction model data set: the data set is an inland inundation influence factor-inland inundation characterization factor data set, and the inland inundation influence factors comprise a rainfall factor, a terrain factor, a pipe network length factor and a river system distance factor; 2, building a rapid prediction model based on a convolutional neural network, carrying out training and testing, in the model building process, carrying out independent coding on different forms of waterlogging influence factors, then carrying out fusion, and finally carrying out decoding after fusion; in the training and testing process, an improved design loss function is adopted; and 3, performing model prediction and model prediction result analysis. According to the method, direct conversion of rainfall and flood elements (inundat</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAQBNNQIOAP5gEUIUokShSBqKigji65A044d5bthO9jWTyAanZHu8si3H0PYlgsCCZMghBZxTgVZHka5BA991OWHhyjcZ6QhyxGii9F00MgNKnz6LzOKQ8qs9r8AmuEJp8RP-rf62LxABto8-Oq2J5Pt_ayI6cdBQcDpWXXXsuyrvaHpm6O1T-bL_QaRd4</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>PAN HAO</creator><creator>ZHUANG YUNCHAO</creator><creator>BIN LINGLING</creator><creator>XU KUI</creator><scope>EVB</scope></search><sort><creationdate>20221111</creationdate><title>Urban inland inundation ponding distribution rapid prediction method based on improved convolutional neural network</title><author>PAN HAO ; ZHUANG YUNCHAO ; BIN LINGLING ; XU KUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115329656A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>PAN HAO</creatorcontrib><creatorcontrib>ZHUANG YUNCHAO</creatorcontrib><creatorcontrib>BIN LINGLING</creatorcontrib><creatorcontrib>XU KUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PAN HAO</au><au>ZHUANG YUNCHAO</au><au>BIN LINGLING</au><au>XU KUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Urban inland inundation ponding distribution rapid prediction method based on improved convolutional neural network</title><date>2022-11-11</date><risdate>2022</risdate><abstract>The invention relates to an improved convolutional neural network-based urban inland inundation ponding distribution rapid prediction method, which comprises the steps of 1, constructing a rapid prediction model data set: the data set is an inland inundation influence factor-inland inundation characterization factor data set, and the inland inundation influence factors comprise a rainfall factor, a terrain factor, a pipe network length factor and a river system distance factor; 2, building a rapid prediction model based on a convolutional neural network, carrying out training and testing, in the model building process, carrying out independent coding on different forms of waterlogging influence factors, then carrying out fusion, and finally carrying out decoding after fusion; in the training and testing process, an improved design loss function is adopted; and 3, performing model prediction and model prediction result analysis. According to the method, direct conversion of rainfall and flood elements (inundat</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115329656A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Urban inland inundation ponding distribution rapid prediction method based on improved convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PAN%20HAO&rft.date=2022-11-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115329656A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true