Polarization image defogging method and device based on non-supervision weight depth model

The invention discloses a polarization image defogging method and device based on a non-supervision weight depth model, and relates to the field of image defogging processing, and the method comprises the steps: taking a deentanglement representation learning thought as a starting point, directly so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI DAOSHENG, MA TONGWEI, YE ZHUANG, SUN BO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI DAOSHENG
MA TONGWEI
YE ZHUANG
SUN BO
description The invention discloses a polarization image defogging method and device based on a non-supervision weight depth model, and relates to the field of image defogging processing, and the method comprises the steps: taking a deentanglement representation learning thought as a starting point, directly solving the polarization information of light waves according to a stokes theory, directly inputting a first image and a second image into the non-supervision weight depth model, and carrying out the defogging of a polarization image. A dehazed polarization image is output through a coding layer, a fusion layer and a decoding layer in sequence, in a model training method, two weights are designed in a weight measurement layer, so that retention modes of different modal information are considered, the two weights are counted into a loss function to train a non-supervision weight depth model, and a non-supervision weight depth model is obtained. And finally, long-distance scene defogging is realized. A focal plane type
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115293992A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115293992A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115293992A3</originalsourceid><addsrcrecordid>eNqNyzEKwkAQheE0FqLeYTxAiiRYpJQQsRILK5swZl82A8nOkl0jeHojeACrBz_fWyf3qw48yZujqCMZ2YIMOrVWnKURsVdD7MwSZ2lBDw4wtFCnLg1Pj2mW8L2-ILaPC_Oxp1ENhm2y6ngI2P12k-xP9a06p_DaIHhu4RCb6pJlh7wsyjI_Fv-YD0MfO0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Polarization image defogging method and device based on non-supervision weight depth model</title><source>esp@cenet</source><creator>LI DAOSHENG ; MA TONGWEI ; YE ZHUANG ; SUN BO</creator><creatorcontrib>LI DAOSHENG ; MA TONGWEI ; YE ZHUANG ; SUN BO</creatorcontrib><description>The invention discloses a polarization image defogging method and device based on a non-supervision weight depth model, and relates to the field of image defogging processing, and the method comprises the steps: taking a deentanglement representation learning thought as a starting point, directly solving the polarization information of light waves according to a stokes theory, directly inputting a first image and a second image into the non-supervision weight depth model, and carrying out the defogging of a polarization image. A dehazed polarization image is output through a coding layer, a fusion layer and a decoding layer in sequence, in a model training method, two weights are designed in a weight measurement layer, so that retention modes of different modal information are considered, the two weights are counted into a loss function to train a non-supervision weight depth model, and a non-supervision weight depth model is obtained. And finally, long-distance scene defogging is realized. A focal plane type</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221104&amp;DB=EPODOC&amp;CC=CN&amp;NR=115293992A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221104&amp;DB=EPODOC&amp;CC=CN&amp;NR=115293992A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI DAOSHENG</creatorcontrib><creatorcontrib>MA TONGWEI</creatorcontrib><creatorcontrib>YE ZHUANG</creatorcontrib><creatorcontrib>SUN BO</creatorcontrib><title>Polarization image defogging method and device based on non-supervision weight depth model</title><description>The invention discloses a polarization image defogging method and device based on a non-supervision weight depth model, and relates to the field of image defogging processing, and the method comprises the steps: taking a deentanglement representation learning thought as a starting point, directly solving the polarization information of light waves according to a stokes theory, directly inputting a first image and a second image into the non-supervision weight depth model, and carrying out the defogging of a polarization image. A dehazed polarization image is output through a coding layer, a fusion layer and a decoding layer in sequence, in a model training method, two weights are designed in a weight measurement layer, so that retention modes of different modal information are considered, the two weights are counted into a loss function to train a non-supervision weight depth model, and a non-supervision weight depth model is obtained. And finally, long-distance scene defogging is realized. A focal plane type</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAQheE0FqLeYTxAiiRYpJQQsRILK5swZl82A8nOkl0jeHojeACrBz_fWyf3qw48yZujqCMZ2YIMOrVWnKURsVdD7MwSZ2lBDw4wtFCnLg1Pj2mW8L2-ILaPC_Oxp1ENhm2y6ngI2P12k-xP9a06p_DaIHhu4RCb6pJlh7wsyjI_Fv-YD0MfO0k</recordid><startdate>20221104</startdate><enddate>20221104</enddate><creator>LI DAOSHENG</creator><creator>MA TONGWEI</creator><creator>YE ZHUANG</creator><creator>SUN BO</creator><scope>EVB</scope></search><sort><creationdate>20221104</creationdate><title>Polarization image defogging method and device based on non-supervision weight depth model</title><author>LI DAOSHENG ; MA TONGWEI ; YE ZHUANG ; SUN BO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115293992A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI DAOSHENG</creatorcontrib><creatorcontrib>MA TONGWEI</creatorcontrib><creatorcontrib>YE ZHUANG</creatorcontrib><creatorcontrib>SUN BO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI DAOSHENG</au><au>MA TONGWEI</au><au>YE ZHUANG</au><au>SUN BO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Polarization image defogging method and device based on non-supervision weight depth model</title><date>2022-11-04</date><risdate>2022</risdate><abstract>The invention discloses a polarization image defogging method and device based on a non-supervision weight depth model, and relates to the field of image defogging processing, and the method comprises the steps: taking a deentanglement representation learning thought as a starting point, directly solving the polarization information of light waves according to a stokes theory, directly inputting a first image and a second image into the non-supervision weight depth model, and carrying out the defogging of a polarization image. A dehazed polarization image is output through a coding layer, a fusion layer and a decoding layer in sequence, in a model training method, two weights are designed in a weight measurement layer, so that retention modes of different modal information are considered, the two weights are counted into a loss function to train a non-supervision weight depth model, and a non-supervision weight depth model is obtained. And finally, long-distance scene defogging is realized. A focal plane type</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115293992A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Polarization image defogging method and device based on non-supervision weight depth model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20DAOSHENG&rft.date=2022-11-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115293992A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true