Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation

The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIANG YUNYAN, MIAO SHUWEI, GAN YUELIN, WANG QI, FANG ZEREN, YANG FAN, LI DAN, HU YUE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIANG YUNYAN
MIAO SHUWEI
GAN YUELIN
WANG QI
FANG ZEREN
YANG FAN
LI DAN
HU YUE
description The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological prediction data of a plurality of wind power plants in a target region; the time evolution mode tracking module extracts time sequence and multi-periodicity time evolution modes of historical wind power data through a gating circulation unit and a multi-kernel convolution layer; the space correlation mode attention module introduces a time-varying mode attention mechanism to endow correlation weights to different time evolution modes of multiple space variables; and finally, the output module outputs the day-ahead prediction scene of the multi-wind power plant power. According to the method, the time-space fusion multi-wind-power-plant short-term power prediction model with the deep learning capability is constructed, t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115293415A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115293415A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115293415A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEuDAi4gzlAhlI6MKIKxAITexU1BoxSO3Jcen2g4gBMX_p68-J5HqKRG4mDSzKiuhQ9G-SHqDlD7WHakBQDdUbC0KM9JEAnnCmgEt_BqEfAl8RhEp4D5OQ7_CBVjP57l8Xs5mPG1a-LYn08XJuTwyQtTpzR2uZSlvVmV23Lel_9Y94lbkId</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation</title><source>esp@cenet</source><creator>LIANG YUNYAN ; MIAO SHUWEI ; GAN YUELIN ; WANG QI ; FANG ZEREN ; YANG FAN ; LI DAN ; HU YUE</creator><creatorcontrib>LIANG YUNYAN ; MIAO SHUWEI ; GAN YUELIN ; WANG QI ; FANG ZEREN ; YANG FAN ; LI DAN ; HU YUE</creatorcontrib><description>The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological prediction data of a plurality of wind power plants in a target region; the time evolution mode tracking module extracts time sequence and multi-periodicity time evolution modes of historical wind power data through a gating circulation unit and a multi-kernel convolution layer; the space correlation mode attention module introduces a time-varying mode attention mechanism to endow correlation weights to different time evolution modes of multiple space variables; and finally, the output module outputs the day-ahead prediction scene of the multi-wind power plant power. According to the method, the time-space fusion multi-wind-power-plant short-term power prediction model with the deep learning capability is constructed, t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221104&amp;DB=EPODOC&amp;CC=CN&amp;NR=115293415A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221104&amp;DB=EPODOC&amp;CC=CN&amp;NR=115293415A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIANG YUNYAN</creatorcontrib><creatorcontrib>MIAO SHUWEI</creatorcontrib><creatorcontrib>GAN YUELIN</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>FANG ZEREN</creatorcontrib><creatorcontrib>YANG FAN</creatorcontrib><creatorcontrib>LI DAN</creatorcontrib><creatorcontrib>HU YUE</creatorcontrib><title>Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation</title><description>The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological prediction data of a plurality of wind power plants in a target region; the time evolution mode tracking module extracts time sequence and multi-periodicity time evolution modes of historical wind power data through a gating circulation unit and a multi-kernel convolution layer; the space correlation mode attention module introduces a time-varying mode attention mechanism to endow correlation weights to different time evolution modes of multiple space variables; and finally, the output module outputs the day-ahead prediction scene of the multi-wind power plant power. According to the method, the time-space fusion multi-wind-power-plant short-term power prediction model with the deep learning capability is constructed, t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEuDAi4gzlAhlI6MKIKxAITexU1BoxSO3Jcen2g4gBMX_p68-J5HqKRG4mDSzKiuhQ9G-SHqDlD7WHakBQDdUbC0KM9JEAnnCmgEt_BqEfAl8RhEp4D5OQ7_CBVjP57l8Xs5mPG1a-LYn08XJuTwyQtTpzR2uZSlvVmV23Lel_9Y94lbkId</recordid><startdate>20221104</startdate><enddate>20221104</enddate><creator>LIANG YUNYAN</creator><creator>MIAO SHUWEI</creator><creator>GAN YUELIN</creator><creator>WANG QI</creator><creator>FANG ZEREN</creator><creator>YANG FAN</creator><creator>LI DAN</creator><creator>HU YUE</creator><scope>EVB</scope></search><sort><creationdate>20221104</creationdate><title>Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation</title><author>LIANG YUNYAN ; MIAO SHUWEI ; GAN YUELIN ; WANG QI ; FANG ZEREN ; YANG FAN ; LI DAN ; HU YUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115293415A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIANG YUNYAN</creatorcontrib><creatorcontrib>MIAO SHUWEI</creatorcontrib><creatorcontrib>GAN YUELIN</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>FANG ZEREN</creatorcontrib><creatorcontrib>YANG FAN</creatorcontrib><creatorcontrib>LI DAN</creatorcontrib><creatorcontrib>HU YUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIANG YUNYAN</au><au>MIAO SHUWEI</au><au>GAN YUELIN</au><au>WANG QI</au><au>FANG ZEREN</au><au>YANG FAN</au><au>LI DAN</au><au>HU YUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation</title><date>2022-11-04</date><risdate>2022</risdate><abstract>The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological prediction data of a plurality of wind power plants in a target region; the time evolution mode tracking module extracts time sequence and multi-periodicity time evolution modes of historical wind power data through a gating circulation unit and a multi-kernel convolution layer; the space correlation mode attention module introduces a time-varying mode attention mechanism to endow correlation weights to different time evolution modes of multiple space variables; and finally, the output module outputs the day-ahead prediction scene of the multi-wind power plant power. According to the method, the time-space fusion multi-wind-power-plant short-term power prediction model with the deep learning capability is constructed, t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115293415A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIANG%20YUNYAN&rft.date=2022-11-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115293415A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true