Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation
The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological predi...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIANG YUNYAN MIAO SHUWEI GAN YUELIN WANG QI FANG ZEREN YANG FAN LI DAN HU YUE |
description | The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological prediction data of a plurality of wind power plants in a target region; the time evolution mode tracking module extracts time sequence and multi-periodicity time evolution modes of historical wind power data through a gating circulation unit and a multi-kernel convolution layer; the space correlation mode attention module introduces a time-varying mode attention mechanism to endow correlation weights to different time evolution modes of multiple space variables; and finally, the output module outputs the day-ahead prediction scene of the multi-wind power plant power. According to the method, the time-space fusion multi-wind-power-plant short-term power prediction model with the deep learning capability is constructed, t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115293415A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115293415A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115293415A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMQNEuDAi4gzlAhlI6MKIKxAITexU1BoxSO3Jcen2g4gBMX_p68-J5HqKRG4mDSzKiuhQ9G-SHqDlD7WHakBQDdUbC0KM9JEAnnCmgEt_BqEfAl8RhEp4D5OQ7_CBVjP57l8Xs5mPG1a-LYn08XJuTwyQtTpzR2uZSlvVmV23Lel_9Y94lbkId</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation</title><source>esp@cenet</source><creator>LIANG YUNYAN ; MIAO SHUWEI ; GAN YUELIN ; WANG QI ; FANG ZEREN ; YANG FAN ; LI DAN ; HU YUE</creator><creatorcontrib>LIANG YUNYAN ; MIAO SHUWEI ; GAN YUELIN ; WANG QI ; FANG ZEREN ; YANG FAN ; LI DAN ; HU YUE</creatorcontrib><description>The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological prediction data of a plurality of wind power plants in a target region; the time evolution mode tracking module extracts time sequence and multi-periodicity time evolution modes of historical wind power data through a gating circulation unit and a multi-kernel convolution layer; the space correlation mode attention module introduces a time-varying mode attention mechanism to endow correlation weights to different time evolution modes of multiple space variables; and finally, the output module outputs the day-ahead prediction scene of the multi-wind power plant power. According to the method, the time-space fusion multi-wind-power-plant short-term power prediction model with the deep learning capability is constructed, t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221104&DB=EPODOC&CC=CN&NR=115293415A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221104&DB=EPODOC&CC=CN&NR=115293415A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIANG YUNYAN</creatorcontrib><creatorcontrib>MIAO SHUWEI</creatorcontrib><creatorcontrib>GAN YUELIN</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>FANG ZEREN</creatorcontrib><creatorcontrib>YANG FAN</creatorcontrib><creatorcontrib>LI DAN</creatorcontrib><creatorcontrib>HU YUE</creatorcontrib><title>Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation</title><description>The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological prediction data of a plurality of wind power plants in a target region; the time evolution mode tracking module extracts time sequence and multi-periodicity time evolution modes of historical wind power data through a gating circulation unit and a multi-kernel convolution layer; the space correlation mode attention module introduces a time-varying mode attention mechanism to endow correlation weights to different time evolution modes of multiple space variables; and finally, the output module outputs the day-ahead prediction scene of the multi-wind power plant power. According to the method, the time-space fusion multi-wind-power-plant short-term power prediction model with the deep learning capability is constructed, t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMQNEuDAi4gzlAhlI6MKIKxAITexU1BoxSO3Jcen2g4gBMX_p68-J5HqKRG4mDSzKiuhQ9G-SHqDlD7WHakBQDdUbC0KM9JEAnnCmgEt_BqEfAl8RhEp4D5OQ7_CBVjP57l8Xs5mPG1a-LYn08XJuTwyQtTpzR2uZSlvVmV23Lel_9Y94lbkId</recordid><startdate>20221104</startdate><enddate>20221104</enddate><creator>LIANG YUNYAN</creator><creator>MIAO SHUWEI</creator><creator>GAN YUELIN</creator><creator>WANG QI</creator><creator>FANG ZEREN</creator><creator>YANG FAN</creator><creator>LI DAN</creator><creator>HU YUE</creator><scope>EVB</scope></search><sort><creationdate>20221104</creationdate><title>Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation</title><author>LIANG YUNYAN ; MIAO SHUWEI ; GAN YUELIN ; WANG QI ; FANG ZEREN ; YANG FAN ; LI DAN ; HU YUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115293415A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIANG YUNYAN</creatorcontrib><creatorcontrib>MIAO SHUWEI</creatorcontrib><creatorcontrib>GAN YUELIN</creatorcontrib><creatorcontrib>WANG QI</creatorcontrib><creatorcontrib>FANG ZEREN</creatorcontrib><creatorcontrib>YANG FAN</creatorcontrib><creatorcontrib>LI DAN</creatorcontrib><creatorcontrib>HU YUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIANG YUNYAN</au><au>MIAO SHUWEI</au><au>GAN YUELIN</au><au>WANG QI</au><au>FANG ZEREN</au><au>YANG FAN</au><au>LI DAN</au><au>HU YUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation</title><date>2022-11-04</date><risdate>2022</risdate><abstract>The invention discloses a multi-wind-power-plant short-term power prediction method considering time evolution and space correlation, and the method mainly comprises four modules: an input module carries out data collection and preprocessing, and objects are historical power and meteorological prediction data of a plurality of wind power plants in a target region; the time evolution mode tracking module extracts time sequence and multi-periodicity time evolution modes of historical wind power data through a gating circulation unit and a multi-kernel convolution layer; the space correlation mode attention module introduces a time-varying mode attention mechanism to endow correlation weights to different time evolution modes of multiple space variables; and finally, the output module outputs the day-ahead prediction scene of the multi-wind power plant power. According to the method, the time-space fusion multi-wind-power-plant short-term power prediction model with the deep learning capability is constructed, t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115293415A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Multi-wind-power-plant short-term power prediction method considering time evolution and space correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIANG%20YUNYAN&rft.date=2022-11-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115293415A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |