Knowledge-driven non-cooperative personality prediction method and system

The invention discloses a non-cooperative personality prediction method and system based on knowledge driving, and the method comprises the steps: 1, enabling obtained personality-related vocabularies to serve as seed words, carrying out the translation and classification, carrying out the correctio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI CHENG, HUANG TAO, WANG CHENG, PI HUIJUAN, WANG HUAZHEN, KANG ZHIYONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI CHENG
HUANG TAO
WANG CHENG
PI HUIJUAN
WANG HUAZHEN
KANG ZHIYONG
description The invention discloses a non-cooperative personality prediction method and system based on knowledge driving, and the method comprises the steps: 1, enabling obtained personality-related vocabularies to serve as seed words, carrying out the translation and classification, carrying out the correction of a result, and constructing a seed dictionary; step 2, selecting various social media users in different category fields, acquiring original text information released by the users, preprocessing the original text information, constructing a corpus, and training a word vector model by using the corpus; step 3, calculating cosine similarity between the seed words and candidate words in the corpus by using the trained word vector model, and selecting the candidate words with large similarity to expand the seed dictionary to construct a basic dictionary; 4, performing synonym supplement on the basic dictionary, and constructing a personality dictionary; and 5, proposing a personality scoring algorithm based on the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115292456A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115292456A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115292456A3</originalsourceid><addsrcrecordid>eNrjZPD0zssvz0lNSU_VTSnKLEvNU8jLz9NNzs8vSC1KLAEKKAAZxfl5iTmZJZUKBUWpKZnJJZn5eQq5qSUZ-SkKiXkpCsWVxSWpuTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQ1MjSyMTUzNGYGDUAXPw1qA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Knowledge-driven non-cooperative personality prediction method and system</title><source>esp@cenet</source><creator>LI CHENG ; HUANG TAO ; WANG CHENG ; PI HUIJUAN ; WANG HUAZHEN ; KANG ZHIYONG</creator><creatorcontrib>LI CHENG ; HUANG TAO ; WANG CHENG ; PI HUIJUAN ; WANG HUAZHEN ; KANG ZHIYONG</creatorcontrib><description>The invention discloses a non-cooperative personality prediction method and system based on knowledge driving, and the method comprises the steps: 1, enabling obtained personality-related vocabularies to serve as seed words, carrying out the translation and classification, carrying out the correction of a result, and constructing a seed dictionary; step 2, selecting various social media users in different category fields, acquiring original text information released by the users, preprocessing the original text information, constructing a corpus, and training a word vector model by using the corpus; step 3, calculating cosine similarity between the seed words and candidate words in the corpus by using the trained word vector model, and selecting the candidate words with large similarity to expand the seed dictionary to construct a basic dictionary; 4, performing synonym supplement on the basic dictionary, and constructing a personality dictionary; and 5, proposing a personality scoring algorithm based on the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221104&amp;DB=EPODOC&amp;CC=CN&amp;NR=115292456A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221104&amp;DB=EPODOC&amp;CC=CN&amp;NR=115292456A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI CHENG</creatorcontrib><creatorcontrib>HUANG TAO</creatorcontrib><creatorcontrib>WANG CHENG</creatorcontrib><creatorcontrib>PI HUIJUAN</creatorcontrib><creatorcontrib>WANG HUAZHEN</creatorcontrib><creatorcontrib>KANG ZHIYONG</creatorcontrib><title>Knowledge-driven non-cooperative personality prediction method and system</title><description>The invention discloses a non-cooperative personality prediction method and system based on knowledge driving, and the method comprises the steps: 1, enabling obtained personality-related vocabularies to serve as seed words, carrying out the translation and classification, carrying out the correction of a result, and constructing a seed dictionary; step 2, selecting various social media users in different category fields, acquiring original text information released by the users, preprocessing the original text information, constructing a corpus, and training a word vector model by using the corpus; step 3, calculating cosine similarity between the seed words and candidate words in the corpus by using the trained word vector model, and selecting the candidate words with large similarity to expand the seed dictionary to construct a basic dictionary; 4, performing synonym supplement on the basic dictionary, and constructing a personality dictionary; and 5, proposing a personality scoring algorithm based on the</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD0zssvz0lNSU_VTSnKLEvNU8jLz9NNzs8vSC1KLAEKKAAZxfl5iTmZJZUKBUWpKZnJJZn5eQq5qSUZ-SkKiXkpCsWVxSWpuTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQ1MjSyMTUzNGYGDUAXPw1qA</recordid><startdate>20221104</startdate><enddate>20221104</enddate><creator>LI CHENG</creator><creator>HUANG TAO</creator><creator>WANG CHENG</creator><creator>PI HUIJUAN</creator><creator>WANG HUAZHEN</creator><creator>KANG ZHIYONG</creator><scope>EVB</scope></search><sort><creationdate>20221104</creationdate><title>Knowledge-driven non-cooperative personality prediction method and system</title><author>LI CHENG ; HUANG TAO ; WANG CHENG ; PI HUIJUAN ; WANG HUAZHEN ; KANG ZHIYONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115292456A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI CHENG</creatorcontrib><creatorcontrib>HUANG TAO</creatorcontrib><creatorcontrib>WANG CHENG</creatorcontrib><creatorcontrib>PI HUIJUAN</creatorcontrib><creatorcontrib>WANG HUAZHEN</creatorcontrib><creatorcontrib>KANG ZHIYONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI CHENG</au><au>HUANG TAO</au><au>WANG CHENG</au><au>PI HUIJUAN</au><au>WANG HUAZHEN</au><au>KANG ZHIYONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Knowledge-driven non-cooperative personality prediction method and system</title><date>2022-11-04</date><risdate>2022</risdate><abstract>The invention discloses a non-cooperative personality prediction method and system based on knowledge driving, and the method comprises the steps: 1, enabling obtained personality-related vocabularies to serve as seed words, carrying out the translation and classification, carrying out the correction of a result, and constructing a seed dictionary; step 2, selecting various social media users in different category fields, acquiring original text information released by the users, preprocessing the original text information, constructing a corpus, and training a word vector model by using the corpus; step 3, calculating cosine similarity between the seed words and candidate words in the corpus by using the trained word vector model, and selecting the candidate words with large similarity to expand the seed dictionary to construct a basic dictionary; 4, performing synonym supplement on the basic dictionary, and constructing a personality dictionary; and 5, proposing a personality scoring algorithm based on the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115292456A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Knowledge-driven non-cooperative personality prediction method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20CHENG&rft.date=2022-11-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115292456A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true