Lightweight contour detection method for simulating parallel grading processing mechanism of visual system
The invention aims to provide a lightweight contour detection method for simulating a parallel hierarchical processing mechanism of a visual system, and the method comprises the following steps: A, constructing a neural network structure which specifically comprises a coding network and a decoding n...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG QU PAN YONGCAI LIN CHUAN GU JIAHONG HUANG KAIJIAN WEI YANXIA XU HANG WANG RUOPU |
description | The invention aims to provide a lightweight contour detection method for simulating a parallel hierarchical processing mechanism of a visual system, and the method comprises the following steps: A, constructing a neural network structure which specifically comprises a coding network and a decoding network; b, inputting the original image into a neural network, performing 1 * 1 convolution, and inputting the original image into the X-type cell model and the Y-type cell model respectively; respectively carrying out 1 * 1 convolution on output results of the X-type cell model and the Y-type cell model, then carrying out addition fusion, and respectively inputting addition fusion results into a simple cell model and a decoding network; the output result of the simple cell model is input into the complex cell model and the decoding network after being subjected to 1 * 1 convolution; the output result of the complex cell model is input into a decoding network after being subjected to 1 * 1 convolution; and the fina |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115272672A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115272672A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115272672A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqH8QAWiWhqCYqFWNmHYXey2bC7E3YmireXiAew-e_x-MtiuHnX64vmBcNJecpgScmo5wSRtGcLHWcQH6eA6pODETOGQAFcRvsNmQ2JzBrJ9Ji8ROAOnl4mDCBvUYrrYtFhENr8uCq2l_Ojue5o5JZkREOJtG3uZXmo6upYV6f9P58PRO1CSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lightweight contour detection method for simulating parallel grading processing mechanism of visual system</title><source>esp@cenet</source><creator>WANG QU ; PAN YONGCAI ; LIN CHUAN ; GU JIAHONG ; HUANG KAIJIAN ; WEI YANXIA ; XU HANG ; WANG RUOPU</creator><creatorcontrib>WANG QU ; PAN YONGCAI ; LIN CHUAN ; GU JIAHONG ; HUANG KAIJIAN ; WEI YANXIA ; XU HANG ; WANG RUOPU</creatorcontrib><description>The invention aims to provide a lightweight contour detection method for simulating a parallel hierarchical processing mechanism of a visual system, and the method comprises the following steps: A, constructing a neural network structure which specifically comprises a coding network and a decoding network; b, inputting the original image into a neural network, performing 1 * 1 convolution, and inputting the original image into the X-type cell model and the Y-type cell model respectively; respectively carrying out 1 * 1 convolution on output results of the X-type cell model and the Y-type cell model, then carrying out addition fusion, and respectively inputting addition fusion results into a simple cell model and a decoding network; the output result of the simple cell model is input into the complex cell model and the decoding network after being subjected to 1 * 1 convolution; the output result of the complex cell model is input into a decoding network after being subjected to 1 * 1 convolution; and the fina</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221101&DB=EPODOC&CC=CN&NR=115272672A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221101&DB=EPODOC&CC=CN&NR=115272672A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG QU</creatorcontrib><creatorcontrib>PAN YONGCAI</creatorcontrib><creatorcontrib>LIN CHUAN</creatorcontrib><creatorcontrib>GU JIAHONG</creatorcontrib><creatorcontrib>HUANG KAIJIAN</creatorcontrib><creatorcontrib>WEI YANXIA</creatorcontrib><creatorcontrib>XU HANG</creatorcontrib><creatorcontrib>WANG RUOPU</creatorcontrib><title>Lightweight contour detection method for simulating parallel grading processing mechanism of visual system</title><description>The invention aims to provide a lightweight contour detection method for simulating a parallel hierarchical processing mechanism of a visual system, and the method comprises the following steps: A, constructing a neural network structure which specifically comprises a coding network and a decoding network; b, inputting the original image into a neural network, performing 1 * 1 convolution, and inputting the original image into the X-type cell model and the Y-type cell model respectively; respectively carrying out 1 * 1 convolution on output results of the X-type cell model and the Y-type cell model, then carrying out addition fusion, and respectively inputting addition fusion results into a simple cell model and a decoding network; the output result of the simple cell model is input into the complex cell model and the decoding network after being subjected to 1 * 1 convolution; the output result of the complex cell model is input into a decoding network after being subjected to 1 * 1 convolution; and the fina</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqH8QAWiWhqCYqFWNmHYXey2bC7E3YmireXiAew-e_x-MtiuHnX64vmBcNJecpgScmo5wSRtGcLHWcQH6eA6pODETOGQAFcRvsNmQ2JzBrJ9Ji8ROAOnl4mDCBvUYrrYtFhENr8uCq2l_Ojue5o5JZkREOJtG3uZXmo6upYV6f9P58PRO1CSg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>WANG QU</creator><creator>PAN YONGCAI</creator><creator>LIN CHUAN</creator><creator>GU JIAHONG</creator><creator>HUANG KAIJIAN</creator><creator>WEI YANXIA</creator><creator>XU HANG</creator><creator>WANG RUOPU</creator><scope>EVB</scope></search><sort><creationdate>20221101</creationdate><title>Lightweight contour detection method for simulating parallel grading processing mechanism of visual system</title><author>WANG QU ; PAN YONGCAI ; LIN CHUAN ; GU JIAHONG ; HUANG KAIJIAN ; WEI YANXIA ; XU HANG ; WANG RUOPU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115272672A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG QU</creatorcontrib><creatorcontrib>PAN YONGCAI</creatorcontrib><creatorcontrib>LIN CHUAN</creatorcontrib><creatorcontrib>GU JIAHONG</creatorcontrib><creatorcontrib>HUANG KAIJIAN</creatorcontrib><creatorcontrib>WEI YANXIA</creatorcontrib><creatorcontrib>XU HANG</creatorcontrib><creatorcontrib>WANG RUOPU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG QU</au><au>PAN YONGCAI</au><au>LIN CHUAN</au><au>GU JIAHONG</au><au>HUANG KAIJIAN</au><au>WEI YANXIA</au><au>XU HANG</au><au>WANG RUOPU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lightweight contour detection method for simulating parallel grading processing mechanism of visual system</title><date>2022-11-01</date><risdate>2022</risdate><abstract>The invention aims to provide a lightweight contour detection method for simulating a parallel hierarchical processing mechanism of a visual system, and the method comprises the following steps: A, constructing a neural network structure which specifically comprises a coding network and a decoding network; b, inputting the original image into a neural network, performing 1 * 1 convolution, and inputting the original image into the X-type cell model and the Y-type cell model respectively; respectively carrying out 1 * 1 convolution on output results of the X-type cell model and the Y-type cell model, then carrying out addition fusion, and respectively inputting addition fusion results into a simple cell model and a decoding network; the output result of the simple cell model is input into the complex cell model and the decoding network after being subjected to 1 * 1 convolution; the output result of the complex cell model is input into a decoding network after being subjected to 1 * 1 convolution; and the fina</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115272672A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Lightweight contour detection method for simulating parallel grading processing mechanism of visual system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20QU&rft.date=2022-11-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115272672A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |