Small sample self-coding neural network model method based on fusion spatial relationship
The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the ima...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG ZHIHUA LIAO YINGXI WU ZHENTIAN LV LINGZHI WEI RONGTAO LI SENLIN LONG ZOU LIU WEILUN YIN ZHENCHAO LUO CHONGLI WANG XIUZHU ZHONG ZHENYU QIAN XIN |
description | The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the image F1 passing through the data input layer to obtain an image F2; performing feature extraction on the image F2 through an inverse residual convolutional layer to obtain a feature map F3; the SE inverse residual convolutional layer performs feature extraction on the feature map F3 and outputs a feature map F4; and the feature map F4 is fused with the spatial relationship through a spatial relationship self-coding module and is subjected to self-coding to obtain a feature map F5, and the feature map F5 is output to a coding space. According to the invention, a spatial relation self-coding module is fused in the small sample feature extraction network, a spatial position self-matching coding algorithm is designed, an |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115272500A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115272500A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115272500A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBN1QIOAPxwMiJUERNYpAVDTQUEUmPicWZ5_lc8T3ccEDqGaLmV2r591rIhDtIyEIkq1GNi5MEHBJmgryh9MbPBsk8JhnNvDSggY4gF3EFUjU2RU5IZXBQWYXt2plNQnuftyo_eX86K8VRh6wFCOW76G_NU3XHtuurk-Hf5wv-fs65w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Small sample self-coding neural network model method based on fusion spatial relationship</title><source>esp@cenet</source><creator>YANG ZHIHUA ; LIAO YINGXI ; WU ZHENTIAN ; LV LINGZHI ; WEI RONGTAO ; LI SENLIN ; LONG ZOU ; LIU WEILUN ; YIN ZHENCHAO ; LUO CHONGLI ; WANG XIUZHU ; ZHONG ZHENYU ; QIAN XIN</creator><creatorcontrib>YANG ZHIHUA ; LIAO YINGXI ; WU ZHENTIAN ; LV LINGZHI ; WEI RONGTAO ; LI SENLIN ; LONG ZOU ; LIU WEILUN ; YIN ZHENCHAO ; LUO CHONGLI ; WANG XIUZHU ; ZHONG ZHENYU ; QIAN XIN</creatorcontrib><description>The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the image F1 passing through the data input layer to obtain an image F2; performing feature extraction on the image F2 through an inverse residual convolutional layer to obtain a feature map F3; the SE inverse residual convolutional layer performs feature extraction on the feature map F3 and outputs a feature map F4; and the feature map F4 is fused with the spatial relationship through a spatial relationship self-coding module and is subjected to self-coding to obtain a feature map F5, and the feature map F5 is output to a coding space. According to the invention, a spatial relation self-coding module is fused in the small sample feature extraction network, a spatial position self-matching coding algorithm is designed, an</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221101&DB=EPODOC&CC=CN&NR=115272500A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221101&DB=EPODOC&CC=CN&NR=115272500A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG ZHIHUA</creatorcontrib><creatorcontrib>LIAO YINGXI</creatorcontrib><creatorcontrib>WU ZHENTIAN</creatorcontrib><creatorcontrib>LV LINGZHI</creatorcontrib><creatorcontrib>WEI RONGTAO</creatorcontrib><creatorcontrib>LI SENLIN</creatorcontrib><creatorcontrib>LONG ZOU</creatorcontrib><creatorcontrib>LIU WEILUN</creatorcontrib><creatorcontrib>YIN ZHENCHAO</creatorcontrib><creatorcontrib>LUO CHONGLI</creatorcontrib><creatorcontrib>WANG XIUZHU</creatorcontrib><creatorcontrib>ZHONG ZHENYU</creatorcontrib><creatorcontrib>QIAN XIN</creatorcontrib><title>Small sample self-coding neural network model method based on fusion spatial relationship</title><description>The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the image F1 passing through the data input layer to obtain an image F2; performing feature extraction on the image F2 through an inverse residual convolutional layer to obtain a feature map F3; the SE inverse residual convolutional layer performs feature extraction on the feature map F3 and outputs a feature map F4; and the feature map F4 is fused with the spatial relationship through a spatial relationship self-coding module and is subjected to self-coding to obtain a feature map F5, and the feature map F5 is output to a coding space. According to the invention, a spatial relation self-coding module is fused in the small sample feature extraction network, a spatial position self-matching coding algorithm is designed, an</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBN1QIOAPxwMiJUERNYpAVDTQUEUmPicWZ5_lc8T3ccEDqGaLmV2r591rIhDtIyEIkq1GNi5MEHBJmgryh9MbPBsk8JhnNvDSggY4gF3EFUjU2RU5IZXBQWYXt2plNQnuftyo_eX86K8VRh6wFCOW76G_NU3XHtuurk-Hf5wv-fs65w</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>YANG ZHIHUA</creator><creator>LIAO YINGXI</creator><creator>WU ZHENTIAN</creator><creator>LV LINGZHI</creator><creator>WEI RONGTAO</creator><creator>LI SENLIN</creator><creator>LONG ZOU</creator><creator>LIU WEILUN</creator><creator>YIN ZHENCHAO</creator><creator>LUO CHONGLI</creator><creator>WANG XIUZHU</creator><creator>ZHONG ZHENYU</creator><creator>QIAN XIN</creator><scope>EVB</scope></search><sort><creationdate>20221101</creationdate><title>Small sample self-coding neural network model method based on fusion spatial relationship</title><author>YANG ZHIHUA ; LIAO YINGXI ; WU ZHENTIAN ; LV LINGZHI ; WEI RONGTAO ; LI SENLIN ; LONG ZOU ; LIU WEILUN ; YIN ZHENCHAO ; LUO CHONGLI ; WANG XIUZHU ; ZHONG ZHENYU ; QIAN XIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115272500A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG ZHIHUA</creatorcontrib><creatorcontrib>LIAO YINGXI</creatorcontrib><creatorcontrib>WU ZHENTIAN</creatorcontrib><creatorcontrib>LV LINGZHI</creatorcontrib><creatorcontrib>WEI RONGTAO</creatorcontrib><creatorcontrib>LI SENLIN</creatorcontrib><creatorcontrib>LONG ZOU</creatorcontrib><creatorcontrib>LIU WEILUN</creatorcontrib><creatorcontrib>YIN ZHENCHAO</creatorcontrib><creatorcontrib>LUO CHONGLI</creatorcontrib><creatorcontrib>WANG XIUZHU</creatorcontrib><creatorcontrib>ZHONG ZHENYU</creatorcontrib><creatorcontrib>QIAN XIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG ZHIHUA</au><au>LIAO YINGXI</au><au>WU ZHENTIAN</au><au>LV LINGZHI</au><au>WEI RONGTAO</au><au>LI SENLIN</au><au>LONG ZOU</au><au>LIU WEILUN</au><au>YIN ZHENCHAO</au><au>LUO CHONGLI</au><au>WANG XIUZHU</au><au>ZHONG ZHENYU</au><au>QIAN XIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Small sample self-coding neural network model method based on fusion spatial relationship</title><date>2022-11-01</date><risdate>2022</risdate><abstract>The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the image F1 passing through the data input layer to obtain an image F2; performing feature extraction on the image F2 through an inverse residual convolutional layer to obtain a feature map F3; the SE inverse residual convolutional layer performs feature extraction on the feature map F3 and outputs a feature map F4; and the feature map F4 is fused with the spatial relationship through a spatial relationship self-coding module and is subjected to self-coding to obtain a feature map F5, and the feature map F5 is output to a coding space. According to the invention, a spatial relation self-coding module is fused in the small sample feature extraction network, a spatial position self-matching coding algorithm is designed, an</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115272500A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Small sample self-coding neural network model method based on fusion spatial relationship |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20ZHIHUA&rft.date=2022-11-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115272500A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |