Small sample self-coding neural network model method based on fusion spatial relationship

The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG ZHIHUA, LIAO YINGXI, WU ZHENTIAN, LV LINGZHI, WEI RONGTAO, LI SENLIN, LONG ZOU, LIU WEILUN, YIN ZHENCHAO, LUO CHONGLI, WANG XIUZHU, ZHONG ZHENYU, QIAN XIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG ZHIHUA
LIAO YINGXI
WU ZHENTIAN
LV LINGZHI
WEI RONGTAO
LI SENLIN
LONG ZOU
LIU WEILUN
YIN ZHENCHAO
LUO CHONGLI
WANG XIUZHU
ZHONG ZHENYU
QIAN XIN
description The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the image F1 passing through the data input layer to obtain an image F2; performing feature extraction on the image F2 through an inverse residual convolutional layer to obtain a feature map F3; the SE inverse residual convolutional layer performs feature extraction on the feature map F3 and outputs a feature map F4; and the feature map F4 is fused with the spatial relationship through a spatial relationship self-coding module and is subjected to self-coding to obtain a feature map F5, and the feature map F5 is output to a coding space. According to the invention, a spatial relation self-coding module is fused in the small sample feature extraction network, a spatial position self-matching coding algorithm is designed, an
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115272500A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115272500A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115272500A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBN1QIOAPxwMiJUERNYpAVDTQUEUmPicWZ5_lc8T3ccEDqGaLmV2r591rIhDtIyEIkq1GNi5MEHBJmgryh9MbPBsk8JhnNvDSggY4gF3EFUjU2RU5IZXBQWYXt2plNQnuftyo_eX86K8VRh6wFCOW76G_NU3XHtuurk-Hf5wv-fs65w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Small sample self-coding neural network model method based on fusion spatial relationship</title><source>esp@cenet</source><creator>YANG ZHIHUA ; LIAO YINGXI ; WU ZHENTIAN ; LV LINGZHI ; WEI RONGTAO ; LI SENLIN ; LONG ZOU ; LIU WEILUN ; YIN ZHENCHAO ; LUO CHONGLI ; WANG XIUZHU ; ZHONG ZHENYU ; QIAN XIN</creator><creatorcontrib>YANG ZHIHUA ; LIAO YINGXI ; WU ZHENTIAN ; LV LINGZHI ; WEI RONGTAO ; LI SENLIN ; LONG ZOU ; LIU WEILUN ; YIN ZHENCHAO ; LUO CHONGLI ; WANG XIUZHU ; ZHONG ZHENYU ; QIAN XIN</creatorcontrib><description>The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the image F1 passing through the data input layer to obtain an image F2; performing feature extraction on the image F2 through an inverse residual convolutional layer to obtain a feature map F3; the SE inverse residual convolutional layer performs feature extraction on the feature map F3 and outputs a feature map F4; and the feature map F4 is fused with the spatial relationship through a spatial relationship self-coding module and is subjected to self-coding to obtain a feature map F5, and the feature map F5 is output to a coding space. According to the invention, a spatial relation self-coding module is fused in the small sample feature extraction network, a spatial position self-matching coding algorithm is designed, an</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221101&amp;DB=EPODOC&amp;CC=CN&amp;NR=115272500A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221101&amp;DB=EPODOC&amp;CC=CN&amp;NR=115272500A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG ZHIHUA</creatorcontrib><creatorcontrib>LIAO YINGXI</creatorcontrib><creatorcontrib>WU ZHENTIAN</creatorcontrib><creatorcontrib>LV LINGZHI</creatorcontrib><creatorcontrib>WEI RONGTAO</creatorcontrib><creatorcontrib>LI SENLIN</creatorcontrib><creatorcontrib>LONG ZOU</creatorcontrib><creatorcontrib>LIU WEILUN</creatorcontrib><creatorcontrib>YIN ZHENCHAO</creatorcontrib><creatorcontrib>LUO CHONGLI</creatorcontrib><creatorcontrib>WANG XIUZHU</creatorcontrib><creatorcontrib>ZHONG ZHENYU</creatorcontrib><creatorcontrib>QIAN XIN</creatorcontrib><title>Small sample self-coding neural network model method based on fusion spatial relationship</title><description>The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the image F1 passing through the data input layer to obtain an image F2; performing feature extraction on the image F2 through an inverse residual convolutional layer to obtain a feature map F3; the SE inverse residual convolutional layer performs feature extraction on the feature map F3 and outputs a feature map F4; and the feature map F4 is fused with the spatial relationship through a spatial relationship self-coding module and is subjected to self-coding to obtain a feature map F5, and the feature map F5 is output to a coding space. According to the invention, a spatial relation self-coding module is fused in the small sample feature extraction network, a spatial position self-matching coding algorithm is designed, an</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBN1QIOAPxwMiJUERNYpAVDTQUEUmPicWZ5_lc8T3ccEDqGaLmV2r591rIhDtIyEIkq1GNi5MEHBJmgryh9MbPBsk8JhnNvDSggY4gF3EFUjU2RU5IZXBQWYXt2plNQnuftyo_eX86K8VRh6wFCOW76G_NU3XHtuurk-Hf5wv-fs65w</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>YANG ZHIHUA</creator><creator>LIAO YINGXI</creator><creator>WU ZHENTIAN</creator><creator>LV LINGZHI</creator><creator>WEI RONGTAO</creator><creator>LI SENLIN</creator><creator>LONG ZOU</creator><creator>LIU WEILUN</creator><creator>YIN ZHENCHAO</creator><creator>LUO CHONGLI</creator><creator>WANG XIUZHU</creator><creator>ZHONG ZHENYU</creator><creator>QIAN XIN</creator><scope>EVB</scope></search><sort><creationdate>20221101</creationdate><title>Small sample self-coding neural network model method based on fusion spatial relationship</title><author>YANG ZHIHUA ; LIAO YINGXI ; WU ZHENTIAN ; LV LINGZHI ; WEI RONGTAO ; LI SENLIN ; LONG ZOU ; LIU WEILUN ; YIN ZHENCHAO ; LUO CHONGLI ; WANG XIUZHU ; ZHONG ZHENYU ; QIAN XIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115272500A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG ZHIHUA</creatorcontrib><creatorcontrib>LIAO YINGXI</creatorcontrib><creatorcontrib>WU ZHENTIAN</creatorcontrib><creatorcontrib>LV LINGZHI</creatorcontrib><creatorcontrib>WEI RONGTAO</creatorcontrib><creatorcontrib>LI SENLIN</creatorcontrib><creatorcontrib>LONG ZOU</creatorcontrib><creatorcontrib>LIU WEILUN</creatorcontrib><creatorcontrib>YIN ZHENCHAO</creatorcontrib><creatorcontrib>LUO CHONGLI</creatorcontrib><creatorcontrib>WANG XIUZHU</creatorcontrib><creatorcontrib>ZHONG ZHENYU</creatorcontrib><creatorcontrib>QIAN XIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG ZHIHUA</au><au>LIAO YINGXI</au><au>WU ZHENTIAN</au><au>LV LINGZHI</au><au>WEI RONGTAO</au><au>LI SENLIN</au><au>LONG ZOU</au><au>LIU WEILUN</au><au>YIN ZHENCHAO</au><au>LUO CHONGLI</au><au>WANG XIUZHU</au><au>ZHONG ZHENYU</au><au>QIAN XIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Small sample self-coding neural network model method based on fusion spatial relationship</title><date>2022-11-01</date><risdate>2022</risdate><abstract>The invention discloses a small sample self-encoding neural network model method based on a fusion spatial relationship, and the method comprises the steps: collecting an image F1, and inputting the image F1 to a data input layer; the convolution layer 1 carries out convolution processing on the image F1 passing through the data input layer to obtain an image F2; performing feature extraction on the image F2 through an inverse residual convolutional layer to obtain a feature map F3; the SE inverse residual convolutional layer performs feature extraction on the feature map F3 and outputs a feature map F4; and the feature map F4 is fused with the spatial relationship through a spatial relationship self-coding module and is subjected to self-coding to obtain a feature map F5, and the feature map F5 is output to a coding space. According to the invention, a spatial relation self-coding module is fused in the small sample feature extraction network, a spatial position self-matching coding algorithm is designed, an</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115272500A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Small sample self-coding neural network model method based on fusion spatial relationship
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20ZHIHUA&rft.date=2022-11-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115272500A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true