Elastic scaling method and device based on Kubernetes container cloud platform and application

The invention provides an elastic scaling method and device based on a Kubernetes container cloud platform and application, and the method comprises the following steps: continuously obtaining the current task data of an algorithm pod at the current moment, and calculating the current comprehensive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG DEPING, PENG DAMENG, LAI JIAFEI, YU QIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG DEPING
PENG DAMENG
LAI JIAFEI
YU QIANG
description The invention provides an elastic scaling method and device based on a Kubernetes container cloud platform and application, and the method comprises the following steps: continuously obtaining the current task data of an algorithm pod at the current moment, and calculating the current comprehensive load rate of the current task data, inputting the comprehensive load rate time sequence into an ARIMA-Kalman prediction model for prediction to obtain a predicted comprehensive load rate; when the predicted comprehensive load rate at a certain moment is greater than a first set threshold value, the algorithm pod is expanded after a first set time period after the moment; and when the predicted comprehensive load rate at a certain moment is smaller than a second set threshold value, carrying out capacity reduction on the algorithm pod after a second set time period after the moment. According to the scheme, the comprehensive load rate of various resources is predicted in real time through the ARIMA-Kalman prediction
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115237610A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115237610A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115237610A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAHPxIOof1gcIxqKepVQEwZNny3azrYF0NySp71fEB3iay8zMzaMJmIsnyITBywAjl6c6QHHg-OWJocPMDlTgOnWchAtnIJWCXjgBBZ0cxICl1zR-O4wxeMLiVZZm1mPIvPpxYdbn5l5fNhy15RyR-DNs65u1-111PNjtqfrHeQMjsTx9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Elastic scaling method and device based on Kubernetes container cloud platform and application</title><source>esp@cenet</source><creator>WANG DEPING ; PENG DAMENG ; LAI JIAFEI ; YU QIANG</creator><creatorcontrib>WANG DEPING ; PENG DAMENG ; LAI JIAFEI ; YU QIANG</creatorcontrib><description>The invention provides an elastic scaling method and device based on a Kubernetes container cloud platform and application, and the method comprises the following steps: continuously obtaining the current task data of an algorithm pod at the current moment, and calculating the current comprehensive load rate of the current task data, inputting the comprehensive load rate time sequence into an ARIMA-Kalman prediction model for prediction to obtain a predicted comprehensive load rate; when the predicted comprehensive load rate at a certain moment is greater than a first set threshold value, the algorithm pod is expanded after a first set time period after the moment; and when the predicted comprehensive load rate at a certain moment is smaller than a second set threshold value, carrying out capacity reduction on the algorithm pod after a second set time period after the moment. According to the scheme, the comprehensive load rate of various resources is predicted in real time through the ARIMA-Kalman prediction</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221025&amp;DB=EPODOC&amp;CC=CN&amp;NR=115237610A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221025&amp;DB=EPODOC&amp;CC=CN&amp;NR=115237610A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG DEPING</creatorcontrib><creatorcontrib>PENG DAMENG</creatorcontrib><creatorcontrib>LAI JIAFEI</creatorcontrib><creatorcontrib>YU QIANG</creatorcontrib><title>Elastic scaling method and device based on Kubernetes container cloud platform and application</title><description>The invention provides an elastic scaling method and device based on a Kubernetes container cloud platform and application, and the method comprises the following steps: continuously obtaining the current task data of an algorithm pod at the current moment, and calculating the current comprehensive load rate of the current task data, inputting the comprehensive load rate time sequence into an ARIMA-Kalman prediction model for prediction to obtain a predicted comprehensive load rate; when the predicted comprehensive load rate at a certain moment is greater than a first set threshold value, the algorithm pod is expanded after a first set time period after the moment; and when the predicted comprehensive load rate at a certain moment is smaller than a second set threshold value, carrying out capacity reduction on the algorithm pod after a second set time period after the moment. According to the scheme, the comprehensive load rate of various resources is predicted in real time through the ARIMA-Kalman prediction</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQAHPxIOof1gcIxqKepVQEwZNny3azrYF0NySp71fEB3iay8zMzaMJmIsnyITBywAjl6c6QHHg-OWJocPMDlTgOnWchAtnIJWCXjgBBZ0cxICl1zR-O4wxeMLiVZZm1mPIvPpxYdbn5l5fNhy15RyR-DNs65u1-111PNjtqfrHeQMjsTx9</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>WANG DEPING</creator><creator>PENG DAMENG</creator><creator>LAI JIAFEI</creator><creator>YU QIANG</creator><scope>EVB</scope></search><sort><creationdate>20221025</creationdate><title>Elastic scaling method and device based on Kubernetes container cloud platform and application</title><author>WANG DEPING ; PENG DAMENG ; LAI JIAFEI ; YU QIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115237610A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG DEPING</creatorcontrib><creatorcontrib>PENG DAMENG</creatorcontrib><creatorcontrib>LAI JIAFEI</creatorcontrib><creatorcontrib>YU QIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG DEPING</au><au>PENG DAMENG</au><au>LAI JIAFEI</au><au>YU QIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Elastic scaling method and device based on Kubernetes container cloud platform and application</title><date>2022-10-25</date><risdate>2022</risdate><abstract>The invention provides an elastic scaling method and device based on a Kubernetes container cloud platform and application, and the method comprises the following steps: continuously obtaining the current task data of an algorithm pod at the current moment, and calculating the current comprehensive load rate of the current task data, inputting the comprehensive load rate time sequence into an ARIMA-Kalman prediction model for prediction to obtain a predicted comprehensive load rate; when the predicted comprehensive load rate at a certain moment is greater than a first set threshold value, the algorithm pod is expanded after a first set time period after the moment; and when the predicted comprehensive load rate at a certain moment is smaller than a second set threshold value, carrying out capacity reduction on the algorithm pod after a second set time period after the moment. According to the scheme, the comprehensive load rate of various resources is predicted in real time through the ARIMA-Kalman prediction</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115237610A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Elastic scaling method and device based on Kubernetes container cloud platform and application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20DEPING&rft.date=2022-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115237610A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true