Particle swarm algorithm-based power sale quantity accurate prediction method for power distribution area

The invention discloses a particle swarm algorithm-based power distribution area power sale quantity accurate prediction method. The method comprises the following steps of S1, obtaining and processing historical power sale data of an area; s2, dividing the historical data into training group data a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GE YUDA, LI DAREN, ZHOU TAIBIN, ZHOU YANG, SHEN JIE, HUANG GUANGQUN, GAN ZEHONG, CHEN MAOJIA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GE YUDA
LI DAREN
ZHOU TAIBIN
ZHOU YANG
SHEN JIE
HUANG GUANGQUN
GAN ZEHONG
CHEN MAOJIA
description The invention discloses a particle swarm algorithm-based power distribution area power sale quantity accurate prediction method. The method comprises the following steps of S1, obtaining and processing historical power sale data of an area; s2, dividing the historical data into training group data and test group data, classifying the historical data, and sorting the classified data according to dates; s3, selecting corresponding independent classification items through a particle swarm algorithm, and establishing a prediction model according to the classification items and the training group data; and S4, the prediction model is tested through the test group data, and calculation deviation is known and corrected. According to the method, the previous electricity sale quantity of the transformer area is acquired and processed, so that the influence of each independent item on the electricity sale quantity is conveniently and accurately calculated, meanwhile, the condition of each independent item in the predic
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115204937A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115204937A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115204937A3</originalsourceid><addsrcrecordid>eNqNizEKwkAQANNYiPqH9QEBYxSxlKBYiYV92NxtzEJyd-7tEfy9InmA1RQzM8_4jqJseoI4ogyA_dMLazfkDUayEPxIAhG_wSuhU9Y3oDFJUAmCkGWj7B0MpJ230HqZFstRhZv0syiEy2zWYh9pNXGRrS_nR3XNKfiaYkBDjrSubkWx3252x_JwKv9pPsT3QZk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Particle swarm algorithm-based power sale quantity accurate prediction method for power distribution area</title><source>esp@cenet</source><creator>GE YUDA ; LI DAREN ; ZHOU TAIBIN ; ZHOU YANG ; SHEN JIE ; HUANG GUANGQUN ; GAN ZEHONG ; CHEN MAOJIA</creator><creatorcontrib>GE YUDA ; LI DAREN ; ZHOU TAIBIN ; ZHOU YANG ; SHEN JIE ; HUANG GUANGQUN ; GAN ZEHONG ; CHEN MAOJIA</creatorcontrib><description>The invention discloses a particle swarm algorithm-based power distribution area power sale quantity accurate prediction method. The method comprises the following steps of S1, obtaining and processing historical power sale data of an area; s2, dividing the historical data into training group data and test group data, classifying the historical data, and sorting the classified data according to dates; s3, selecting corresponding independent classification items through a particle swarm algorithm, and establishing a prediction model according to the classification items and the training group data; and S4, the prediction model is tested through the test group data, and calculation deviation is known and corrected. According to the method, the previous electricity sale quantity of the transformer area is acquired and processed, so that the influence of each independent item on the electricity sale quantity is conveniently and accurately calculated, meanwhile, the condition of each independent item in the predic</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221018&amp;DB=EPODOC&amp;CC=CN&amp;NR=115204937A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221018&amp;DB=EPODOC&amp;CC=CN&amp;NR=115204937A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GE YUDA</creatorcontrib><creatorcontrib>LI DAREN</creatorcontrib><creatorcontrib>ZHOU TAIBIN</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>SHEN JIE</creatorcontrib><creatorcontrib>HUANG GUANGQUN</creatorcontrib><creatorcontrib>GAN ZEHONG</creatorcontrib><creatorcontrib>CHEN MAOJIA</creatorcontrib><title>Particle swarm algorithm-based power sale quantity accurate prediction method for power distribution area</title><description>The invention discloses a particle swarm algorithm-based power distribution area power sale quantity accurate prediction method. The method comprises the following steps of S1, obtaining and processing historical power sale data of an area; s2, dividing the historical data into training group data and test group data, classifying the historical data, and sorting the classified data according to dates; s3, selecting corresponding independent classification items through a particle swarm algorithm, and establishing a prediction model according to the classification items and the training group data; and S4, the prediction model is tested through the test group data, and calculation deviation is known and corrected. According to the method, the previous electricity sale quantity of the transformer area is acquired and processed, so that the influence of each independent item on the electricity sale quantity is conveniently and accurately calculated, meanwhile, the condition of each independent item in the predic</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQANNYiPqH9QEBYxSxlKBYiYV92NxtzEJyd-7tEfy9InmA1RQzM8_4jqJseoI4ogyA_dMLazfkDUayEPxIAhG_wSuhU9Y3oDFJUAmCkGWj7B0MpJ230HqZFstRhZv0syiEy2zWYh9pNXGRrS_nR3XNKfiaYkBDjrSubkWx3252x_JwKv9pPsT3QZk</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>GE YUDA</creator><creator>LI DAREN</creator><creator>ZHOU TAIBIN</creator><creator>ZHOU YANG</creator><creator>SHEN JIE</creator><creator>HUANG GUANGQUN</creator><creator>GAN ZEHONG</creator><creator>CHEN MAOJIA</creator><scope>EVB</scope></search><sort><creationdate>20221018</creationdate><title>Particle swarm algorithm-based power sale quantity accurate prediction method for power distribution area</title><author>GE YUDA ; LI DAREN ; ZHOU TAIBIN ; ZHOU YANG ; SHEN JIE ; HUANG GUANGQUN ; GAN ZEHONG ; CHEN MAOJIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115204937A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>GE YUDA</creatorcontrib><creatorcontrib>LI DAREN</creatorcontrib><creatorcontrib>ZHOU TAIBIN</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>SHEN JIE</creatorcontrib><creatorcontrib>HUANG GUANGQUN</creatorcontrib><creatorcontrib>GAN ZEHONG</creatorcontrib><creatorcontrib>CHEN MAOJIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GE YUDA</au><au>LI DAREN</au><au>ZHOU TAIBIN</au><au>ZHOU YANG</au><au>SHEN JIE</au><au>HUANG GUANGQUN</au><au>GAN ZEHONG</au><au>CHEN MAOJIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Particle swarm algorithm-based power sale quantity accurate prediction method for power distribution area</title><date>2022-10-18</date><risdate>2022</risdate><abstract>The invention discloses a particle swarm algorithm-based power distribution area power sale quantity accurate prediction method. The method comprises the following steps of S1, obtaining and processing historical power sale data of an area; s2, dividing the historical data into training group data and test group data, classifying the historical data, and sorting the classified data according to dates; s3, selecting corresponding independent classification items through a particle swarm algorithm, and establishing a prediction model according to the classification items and the training group data; and S4, the prediction model is tested through the test group data, and calculation deviation is known and corrected. According to the method, the previous electricity sale quantity of the transformer area is acquired and processed, so that the influence of each independent item on the electricity sale quantity is conveniently and accurately calculated, meanwhile, the condition of each independent item in the predic</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115204937A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Particle swarm algorithm-based power sale quantity accurate prediction method for power distribution area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GE%20YUDA&rft.date=2022-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115204937A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true