Credit card fraud detection method and device based on multi-feature fusion and medium

The invention provides a credit card fraud detection method and device based on multi-feature fusion and a medium, which can effectively improve the accuracy and recall rate of fraudulent transaction prediction and greatly reduce the false positive rate of fraudulent transactions, and the method com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU BIYIN, WANG YE, YU CHENG, XIE YALONG, ZHOU BIN, JIANG RONG, LI AIPING, TU HONGKUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU BIYIN
WANG YE
YU CHENG
XIE YALONG
ZHOU BIN
JIANG RONG
LI AIPING
TU HONGKUI
description The invention provides a credit card fraud detection method and device based on multi-feature fusion and a medium, which can effectively improve the accuracy and recall rate of fraudulent transaction prediction and greatly reduce the false positive rate of fraudulent transactions, and the method comprises the following steps: collecting cardholder information data; performing embedded representation on the basic information data, the financial operation behavior data and the credit card transaction information data of the cardholder through a feedforward neural network model, a convolutional neural network model and a Bi-LSTM model, and performing splicing to obtain a sample feature representation vector; constructing and training a generative adversarial network model; using the trained generator model to generate a simulated fraud sample, combining the simulated fraud sample to generate a new training set, constructing and training a plurality of detection base models, and combining the trained detection ba
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115204901A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115204901A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115204901A3</originalsourceid><addsrcrecordid>eNqNzM0KwjAQBOBcPIj6DusDFFp_Dh6lKJ48ideyZic00KYl2fj8GvABPA3MfMzSPNsI8UqWo5CLnIUECqt-CjRC-0mIQynf3oJenCBUpjyorxxYcwS5nIovcPze5XFtFo6HhM0vV2Z7vTzaW4V56pBmtgjQrr03zXFXH051c97_Yz7TmDj9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Credit card fraud detection method and device based on multi-feature fusion and medium</title><source>esp@cenet</source><creator>HU BIYIN ; WANG YE ; YU CHENG ; XIE YALONG ; ZHOU BIN ; JIANG RONG ; LI AIPING ; TU HONGKUI</creator><creatorcontrib>HU BIYIN ; WANG YE ; YU CHENG ; XIE YALONG ; ZHOU BIN ; JIANG RONG ; LI AIPING ; TU HONGKUI</creatorcontrib><description>The invention provides a credit card fraud detection method and device based on multi-feature fusion and a medium, which can effectively improve the accuracy and recall rate of fraudulent transaction prediction and greatly reduce the false positive rate of fraudulent transactions, and the method comprises the following steps: collecting cardholder information data; performing embedded representation on the basic information data, the financial operation behavior data and the credit card transaction information data of the cardholder through a feedforward neural network model, a convolutional neural network model and a Bi-LSTM model, and performing splicing to obtain a sample feature representation vector; constructing and training a generative adversarial network model; using the trained generator model to generate a simulated fraud sample, combining the simulated fraud sample to generate a new training set, constructing and training a plurality of detection base models, and combining the trained detection ba</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221018&amp;DB=EPODOC&amp;CC=CN&amp;NR=115204901A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221018&amp;DB=EPODOC&amp;CC=CN&amp;NR=115204901A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU BIYIN</creatorcontrib><creatorcontrib>WANG YE</creatorcontrib><creatorcontrib>YU CHENG</creatorcontrib><creatorcontrib>XIE YALONG</creatorcontrib><creatorcontrib>ZHOU BIN</creatorcontrib><creatorcontrib>JIANG RONG</creatorcontrib><creatorcontrib>LI AIPING</creatorcontrib><creatorcontrib>TU HONGKUI</creatorcontrib><title>Credit card fraud detection method and device based on multi-feature fusion and medium</title><description>The invention provides a credit card fraud detection method and device based on multi-feature fusion and a medium, which can effectively improve the accuracy and recall rate of fraudulent transaction prediction and greatly reduce the false positive rate of fraudulent transactions, and the method comprises the following steps: collecting cardholder information data; performing embedded representation on the basic information data, the financial operation behavior data and the credit card transaction information data of the cardholder through a feedforward neural network model, a convolutional neural network model and a Bi-LSTM model, and performing splicing to obtain a sample feature representation vector; constructing and training a generative adversarial network model; using the trained generator model to generate a simulated fraud sample, combining the simulated fraud sample to generate a new training set, constructing and training a plurality of detection base models, and combining the trained detection ba</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzM0KwjAQBOBcPIj6DusDFFp_Dh6lKJ48ideyZic00KYl2fj8GvABPA3MfMzSPNsI8UqWo5CLnIUECqt-CjRC-0mIQynf3oJenCBUpjyorxxYcwS5nIovcPze5XFtFo6HhM0vV2Z7vTzaW4V56pBmtgjQrr03zXFXH051c97_Yz7TmDj9</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>HU BIYIN</creator><creator>WANG YE</creator><creator>YU CHENG</creator><creator>XIE YALONG</creator><creator>ZHOU BIN</creator><creator>JIANG RONG</creator><creator>LI AIPING</creator><creator>TU HONGKUI</creator><scope>EVB</scope></search><sort><creationdate>20221018</creationdate><title>Credit card fraud detection method and device based on multi-feature fusion and medium</title><author>HU BIYIN ; WANG YE ; YU CHENG ; XIE YALONG ; ZHOU BIN ; JIANG RONG ; LI AIPING ; TU HONGKUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115204901A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>HU BIYIN</creatorcontrib><creatorcontrib>WANG YE</creatorcontrib><creatorcontrib>YU CHENG</creatorcontrib><creatorcontrib>XIE YALONG</creatorcontrib><creatorcontrib>ZHOU BIN</creatorcontrib><creatorcontrib>JIANG RONG</creatorcontrib><creatorcontrib>LI AIPING</creatorcontrib><creatorcontrib>TU HONGKUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU BIYIN</au><au>WANG YE</au><au>YU CHENG</au><au>XIE YALONG</au><au>ZHOU BIN</au><au>JIANG RONG</au><au>LI AIPING</au><au>TU HONGKUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Credit card fraud detection method and device based on multi-feature fusion and medium</title><date>2022-10-18</date><risdate>2022</risdate><abstract>The invention provides a credit card fraud detection method and device based on multi-feature fusion and a medium, which can effectively improve the accuracy and recall rate of fraudulent transaction prediction and greatly reduce the false positive rate of fraudulent transactions, and the method comprises the following steps: collecting cardholder information data; performing embedded representation on the basic information data, the financial operation behavior data and the credit card transaction information data of the cardholder through a feedforward neural network model, a convolutional neural network model and a Bi-LSTM model, and performing splicing to obtain a sample feature representation vector; constructing and training a generative adversarial network model; using the trained generator model to generate a simulated fraud sample, combining the simulated fraud sample to generate a new training set, constructing and training a plurality of detection base models, and combining the trained detection ba</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115204901A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Credit card fraud detection method and device based on multi-feature fusion and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20BIYIN&rft.date=2022-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115204901A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true