Statistics model self-defining and recommending method based on database system
The invention discloses a statistical model customizing and recommending method based on a database system. The method comprises the following steps of 1, customizing a single statistical regression model; 2, storage management of expressions, related parameters and results of the statistical regres...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SONG WENJIE MA RUI HUANG TAO CHEN XU TAO LEI YE FANGYI LI FANGYI LIAO DONGXIAO XU JUN FU XIUJUN JIANG BIN TAO WEI CHEN LIN XU ZHIMIN HU BINBIN XU RUI LIU BING MA NENGWU ZHANG LI |
description | The invention discloses a statistical model customizing and recommending method based on a database system. The method comprises the following steps of 1, customizing a single statistical regression model; 2, storage management of expressions, related parameters and results of the statistical regression model is carried out in a database system; and 3, automatically recommending the statistical regression model by using the statistical regression model record stored and managed in the database system. The problem that in the prior art, the requirement for a user is high is solved, and the problems that in an existing safety monitoring model analysis technology, if influence factors need to be selected again to construct an analysis model, a program needs to be written again, and the self-definition degree is not high enough are solved; the method has the advantages that the requirements of non-professionals for model analysis are met, technicians are allowed to customize statistical models according to own mo |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115203267A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115203267A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115203267A3</originalsourceid><addsrcrecordid>eNqNir0KwkAQBq-xEPUd1gcImAS1lqBYaaF9WLPf6cH9BHcb314CPoDVMMPM3fVmbEEtDEqpCCIpoq8EPuSQn8RZ6I2hpIQsU0iwVxF6sEKoZBI2noT0o4a0dDPPUbH6ceHWp-O9O1cYSw8deUCG9d2lrrfNpm12-0P7z_MFbPA3BQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Statistics model self-defining and recommending method based on database system</title><source>esp@cenet</source><creator>SONG WENJIE ; MA RUI ; HUANG TAO ; CHEN XU ; TAO LEI ; YE FANGYI ; LI FANGYI ; LIAO DONGXIAO ; XU JUN ; FU XIUJUN ; JIANG BIN ; TAO WEI ; CHEN LIN ; XU ZHIMIN ; HU BINBIN ; XU RUI ; LIU BING ; MA NENGWU ; ZHANG LI</creator><creatorcontrib>SONG WENJIE ; MA RUI ; HUANG TAO ; CHEN XU ; TAO LEI ; YE FANGYI ; LI FANGYI ; LIAO DONGXIAO ; XU JUN ; FU XIUJUN ; JIANG BIN ; TAO WEI ; CHEN LIN ; XU ZHIMIN ; HU BINBIN ; XU RUI ; LIU BING ; MA NENGWU ; ZHANG LI</creatorcontrib><description>The invention discloses a statistical model customizing and recommending method based on a database system. The method comprises the following steps of 1, customizing a single statistical regression model; 2, storage management of expressions, related parameters and results of the statistical regression model is carried out in a database system; and 3, automatically recommending the statistical regression model by using the statistical regression model record stored and managed in the database system. The problem that in the prior art, the requirement for a user is high is solved, and the problems that in an existing safety monitoring model analysis technology, if influence factors need to be selected again to construct an analysis model, a program needs to be written again, and the self-definition degree is not high enough are solved; the method has the advantages that the requirements of non-professionals for model analysis are met, technicians are allowed to customize statistical models according to own mo</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221018&DB=EPODOC&CC=CN&NR=115203267A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221018&DB=EPODOC&CC=CN&NR=115203267A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SONG WENJIE</creatorcontrib><creatorcontrib>MA RUI</creatorcontrib><creatorcontrib>HUANG TAO</creatorcontrib><creatorcontrib>CHEN XU</creatorcontrib><creatorcontrib>TAO LEI</creatorcontrib><creatorcontrib>YE FANGYI</creatorcontrib><creatorcontrib>LI FANGYI</creatorcontrib><creatorcontrib>LIAO DONGXIAO</creatorcontrib><creatorcontrib>XU JUN</creatorcontrib><creatorcontrib>FU XIUJUN</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>TAO WEI</creatorcontrib><creatorcontrib>CHEN LIN</creatorcontrib><creatorcontrib>XU ZHIMIN</creatorcontrib><creatorcontrib>HU BINBIN</creatorcontrib><creatorcontrib>XU RUI</creatorcontrib><creatorcontrib>LIU BING</creatorcontrib><creatorcontrib>MA NENGWU</creatorcontrib><creatorcontrib>ZHANG LI</creatorcontrib><title>Statistics model self-defining and recommending method based on database system</title><description>The invention discloses a statistical model customizing and recommending method based on a database system. The method comprises the following steps of 1, customizing a single statistical regression model; 2, storage management of expressions, related parameters and results of the statistical regression model is carried out in a database system; and 3, automatically recommending the statistical regression model by using the statistical regression model record stored and managed in the database system. The problem that in the prior art, the requirement for a user is high is solved, and the problems that in an existing safety monitoring model analysis technology, if influence factors need to be selected again to construct an analysis model, a program needs to be written again, and the self-definition degree is not high enough are solved; the method has the advantages that the requirements of non-professionals for model analysis are met, technicians are allowed to customize statistical models according to own mo</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNir0KwkAQBq-xEPUd1gcImAS1lqBYaaF9WLPf6cH9BHcb314CPoDVMMPM3fVmbEEtDEqpCCIpoq8EPuSQn8RZ6I2hpIQsU0iwVxF6sEKoZBI2noT0o4a0dDPPUbH6ceHWp-O9O1cYSw8deUCG9d2lrrfNpm12-0P7z_MFbPA3BQ</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>SONG WENJIE</creator><creator>MA RUI</creator><creator>HUANG TAO</creator><creator>CHEN XU</creator><creator>TAO LEI</creator><creator>YE FANGYI</creator><creator>LI FANGYI</creator><creator>LIAO DONGXIAO</creator><creator>XU JUN</creator><creator>FU XIUJUN</creator><creator>JIANG BIN</creator><creator>TAO WEI</creator><creator>CHEN LIN</creator><creator>XU ZHIMIN</creator><creator>HU BINBIN</creator><creator>XU RUI</creator><creator>LIU BING</creator><creator>MA NENGWU</creator><creator>ZHANG LI</creator><scope>EVB</scope></search><sort><creationdate>20221018</creationdate><title>Statistics model self-defining and recommending method based on database system</title><author>SONG WENJIE ; MA RUI ; HUANG TAO ; CHEN XU ; TAO LEI ; YE FANGYI ; LI FANGYI ; LIAO DONGXIAO ; XU JUN ; FU XIUJUN ; JIANG BIN ; TAO WEI ; CHEN LIN ; XU ZHIMIN ; HU BINBIN ; XU RUI ; LIU BING ; MA NENGWU ; ZHANG LI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115203267A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SONG WENJIE</creatorcontrib><creatorcontrib>MA RUI</creatorcontrib><creatorcontrib>HUANG TAO</creatorcontrib><creatorcontrib>CHEN XU</creatorcontrib><creatorcontrib>TAO LEI</creatorcontrib><creatorcontrib>YE FANGYI</creatorcontrib><creatorcontrib>LI FANGYI</creatorcontrib><creatorcontrib>LIAO DONGXIAO</creatorcontrib><creatorcontrib>XU JUN</creatorcontrib><creatorcontrib>FU XIUJUN</creatorcontrib><creatorcontrib>JIANG BIN</creatorcontrib><creatorcontrib>TAO WEI</creatorcontrib><creatorcontrib>CHEN LIN</creatorcontrib><creatorcontrib>XU ZHIMIN</creatorcontrib><creatorcontrib>HU BINBIN</creatorcontrib><creatorcontrib>XU RUI</creatorcontrib><creatorcontrib>LIU BING</creatorcontrib><creatorcontrib>MA NENGWU</creatorcontrib><creatorcontrib>ZHANG LI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SONG WENJIE</au><au>MA RUI</au><au>HUANG TAO</au><au>CHEN XU</au><au>TAO LEI</au><au>YE FANGYI</au><au>LI FANGYI</au><au>LIAO DONGXIAO</au><au>XU JUN</au><au>FU XIUJUN</au><au>JIANG BIN</au><au>TAO WEI</au><au>CHEN LIN</au><au>XU ZHIMIN</au><au>HU BINBIN</au><au>XU RUI</au><au>LIU BING</au><au>MA NENGWU</au><au>ZHANG LI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Statistics model self-defining and recommending method based on database system</title><date>2022-10-18</date><risdate>2022</risdate><abstract>The invention discloses a statistical model customizing and recommending method based on a database system. The method comprises the following steps of 1, customizing a single statistical regression model; 2, storage management of expressions, related parameters and results of the statistical regression model is carried out in a database system; and 3, automatically recommending the statistical regression model by using the statistical regression model record stored and managed in the database system. The problem that in the prior art, the requirement for a user is high is solved, and the problems that in an existing safety monitoring model analysis technology, if influence factors need to be selected again to construct an analysis model, a program needs to be written again, and the self-definition degree is not high enough are solved; the method has the advantages that the requirements of non-professionals for model analysis are met, technicians are allowed to customize statistical models according to own mo</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115203267A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Statistics model self-defining and recommending method based on database system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SONG%20WENJIE&rft.date=2022-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115203267A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |