Deep learning-based fault intelligent identification method and system

The invention relates to a fault intelligent identification method and system based on deep learning, and the method comprises the steps: generating a fault and a label corresponding to the fault according to input seismic data, constructing a fault sample library, and providing a training sample an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI CHAO, ZHENG YING, WANG XINGZHI, DU XIANGDONG, OUYANG YANG, ZHU ZHENYU, DING JICAI, HUANG XIAOGANG, WANG QINGZHEN, XUE DONGCHUAN, JIANG XIUDI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI CHAO
ZHENG YING
WANG XINGZHI
DU XIANGDONG
OUYANG YANG
ZHU ZHENYU
DING JICAI
HUANG XIAOGANG
WANG QINGZHEN
XUE DONGCHUAN
JIANG XIUDI
description The invention relates to a fault intelligent identification method and system based on deep learning, and the method comprises the steps: generating a fault and a label corresponding to the fault according to input seismic data, constructing a fault sample library, and providing a training sample and a label thereof by the fault sample library; constructing a convolutional neural network based on image segmentation, and training the convolutional neural network by the training sample and the label to obtain a network model for performing intelligent detection on a fault in the three-dimensional seismic data; performing data standardization and data augmentation on parameters of the network model, selecting an optimized loss function, and improving the fault identification capability of the network model; and inputting real seismic data into the network model for prediction, evaluating a prediction result, and adjusting and perfecting a training sample. The method is higher in efficiency, more accurate in resu
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115201902A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115201902A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115201902A3</originalsourceid><addsrcrecordid>eNrjZHBzSU0tUMhJTSzKy8xL101KLE5NUUhLLM0pUcjMK0nNyclMT80DslOAZGZaZnJiSWZ-nkJuaklGfopCYl6KQnFlcUlqLg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzQ0NTIwtDQwcjQmRg0ATDMzzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based fault intelligent identification method and system</title><source>esp@cenet</source><creator>LI CHAO ; ZHENG YING ; WANG XINGZHI ; DU XIANGDONG ; OUYANG YANG ; ZHU ZHENYU ; DING JICAI ; HUANG XIAOGANG ; WANG QINGZHEN ; XUE DONGCHUAN ; JIANG XIUDI</creator><creatorcontrib>LI CHAO ; ZHENG YING ; WANG XINGZHI ; DU XIANGDONG ; OUYANG YANG ; ZHU ZHENYU ; DING JICAI ; HUANG XIAOGANG ; WANG QINGZHEN ; XUE DONGCHUAN ; JIANG XIUDI</creatorcontrib><description>The invention relates to a fault intelligent identification method and system based on deep learning, and the method comprises the steps: generating a fault and a label corresponding to the fault according to input seismic data, constructing a fault sample library, and providing a training sample and a label thereof by the fault sample library; constructing a convolutional neural network based on image segmentation, and training the convolutional neural network by the training sample and the label to obtain a network model for performing intelligent detection on a fault in the three-dimensional seismic data; performing data standardization and data augmentation on parameters of the network model, selecting an optimized loss function, and improving the fault identification capability of the network model; and inputting real seismic data into the network model for prediction, evaluating a prediction result, and adjusting and perfecting a training sample. The method is higher in efficiency, more accurate in resu</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221018&amp;DB=EPODOC&amp;CC=CN&amp;NR=115201902A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221018&amp;DB=EPODOC&amp;CC=CN&amp;NR=115201902A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI CHAO</creatorcontrib><creatorcontrib>ZHENG YING</creatorcontrib><creatorcontrib>WANG XINGZHI</creatorcontrib><creatorcontrib>DU XIANGDONG</creatorcontrib><creatorcontrib>OUYANG YANG</creatorcontrib><creatorcontrib>ZHU ZHENYU</creatorcontrib><creatorcontrib>DING JICAI</creatorcontrib><creatorcontrib>HUANG XIAOGANG</creatorcontrib><creatorcontrib>WANG QINGZHEN</creatorcontrib><creatorcontrib>XUE DONGCHUAN</creatorcontrib><creatorcontrib>JIANG XIUDI</creatorcontrib><title>Deep learning-based fault intelligent identification method and system</title><description>The invention relates to a fault intelligent identification method and system based on deep learning, and the method comprises the steps: generating a fault and a label corresponding to the fault according to input seismic data, constructing a fault sample library, and providing a training sample and a label thereof by the fault sample library; constructing a convolutional neural network based on image segmentation, and training the convolutional neural network by the training sample and the label to obtain a network model for performing intelligent detection on a fault in the three-dimensional seismic data; performing data standardization and data augmentation on parameters of the network model, selecting an optimized loss function, and improving the fault identification capability of the network model; and inputting real seismic data into the network model for prediction, evaluating a prediction result, and adjusting and perfecting a training sample. The method is higher in efficiency, more accurate in resu</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzSU0tUMhJTSzKy8xL101KLE5NUUhLLM0pUcjMK0nNyclMT80DslOAZGZaZnJiSWZ-nkJuaklGfopCYl6KQnFlcUlqLg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzQ0NTIwtDQwcjQmRg0ATDMzzw</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>LI CHAO</creator><creator>ZHENG YING</creator><creator>WANG XINGZHI</creator><creator>DU XIANGDONG</creator><creator>OUYANG YANG</creator><creator>ZHU ZHENYU</creator><creator>DING JICAI</creator><creator>HUANG XIAOGANG</creator><creator>WANG QINGZHEN</creator><creator>XUE DONGCHUAN</creator><creator>JIANG XIUDI</creator><scope>EVB</scope></search><sort><creationdate>20221018</creationdate><title>Deep learning-based fault intelligent identification method and system</title><author>LI CHAO ; ZHENG YING ; WANG XINGZHI ; DU XIANGDONG ; OUYANG YANG ; ZHU ZHENYU ; DING JICAI ; HUANG XIAOGANG ; WANG QINGZHEN ; XUE DONGCHUAN ; JIANG XIUDI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115201902A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LI CHAO</creatorcontrib><creatorcontrib>ZHENG YING</creatorcontrib><creatorcontrib>WANG XINGZHI</creatorcontrib><creatorcontrib>DU XIANGDONG</creatorcontrib><creatorcontrib>OUYANG YANG</creatorcontrib><creatorcontrib>ZHU ZHENYU</creatorcontrib><creatorcontrib>DING JICAI</creatorcontrib><creatorcontrib>HUANG XIAOGANG</creatorcontrib><creatorcontrib>WANG QINGZHEN</creatorcontrib><creatorcontrib>XUE DONGCHUAN</creatorcontrib><creatorcontrib>JIANG XIUDI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI CHAO</au><au>ZHENG YING</au><au>WANG XINGZHI</au><au>DU XIANGDONG</au><au>OUYANG YANG</au><au>ZHU ZHENYU</au><au>DING JICAI</au><au>HUANG XIAOGANG</au><au>WANG QINGZHEN</au><au>XUE DONGCHUAN</au><au>JIANG XIUDI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based fault intelligent identification method and system</title><date>2022-10-18</date><risdate>2022</risdate><abstract>The invention relates to a fault intelligent identification method and system based on deep learning, and the method comprises the steps: generating a fault and a label corresponding to the fault according to input seismic data, constructing a fault sample library, and providing a training sample and a label thereof by the fault sample library; constructing a convolutional neural network based on image segmentation, and training the convolutional neural network by the training sample and the label to obtain a network model for performing intelligent detection on a fault in the three-dimensional seismic data; performing data standardization and data augmentation on parameters of the network model, selecting an optimized loss function, and improving the fault identification capability of the network model; and inputting real seismic data into the network model for prediction, evaluating a prediction result, and adjusting and perfecting a training sample. The method is higher in efficiency, more accurate in resu</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115201902A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title Deep learning-based fault intelligent identification method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20CHAO&rft.date=2022-10-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115201902A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true