Generator rotor vent hole foreign matter monitoring and identifying system and method

The invention discloses a rotor vent hole foreign matter identification method and system based on lightweight YOLOv4, and the method comprises the steps: collecting a vent hole foreign matter image, and carrying out the preprocessing of the image; constructing a ventilation hole foreign matter data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN WEI, XU JIANGUO, CHU YAO, ZHOU LIN, QIU TAIJIN, LIU CHONG, ZOU XIANG, YUE JING, CHEN JINGJING, YAN SIJIE, ZHAO LONGPAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN WEI
XU JIANGUO
CHU YAO
ZHOU LIN
QIU TAIJIN
LIU CHONG
ZOU XIANG
YUE JING
CHEN JINGJING
YAN SIJIE
ZHAO LONGPAN
description The invention discloses a rotor vent hole foreign matter identification method and system based on lightweight YOLOv4, and the method comprises the steps: collecting a vent hole foreign matter image, and carrying out the preprocessing of the image; constructing a ventilation hole foreign matter data set; constructing a lightweight foreign matter recognition model; based on the ventilation hole foreign matter data set, a lightweight foreign matter recognition model is trained; and testing the trained lightweight foreign matter identification model, and identifying the foreign matter in the vent hole. According to the method, various illumination brightness environments are simulated and corresponding video pictures are collected, so that the model learns rules implied behind the images, and data except a learning set with the same rule can also be properly output through a trained network; when the model faces unknown data, the model also has good prediction capability, and over-fitting and under-fitting are e
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115170829A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115170829A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115170829A3</originalsourceid><addsrcrecordid>eNrjZAh1T81LLUosyS9SKMoHkWWpeSUKGfk5qQpp-UWpmel5CrmJJSWpRQq5-XmZQAWZeekKiXkpCpkpQIWZaZUgfnFlcUlqLlg4N7UkIz-Fh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJgNtLYl39jM0NDU0N7AwsnQ0JkYNACjnOcU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Generator rotor vent hole foreign matter monitoring and identifying system and method</title><source>esp@cenet</source><creator>CHEN WEI ; XU JIANGUO ; CHU YAO ; ZHOU LIN ; QIU TAIJIN ; LIU CHONG ; ZOU XIANG ; YUE JING ; CHEN JINGJING ; YAN SIJIE ; ZHAO LONGPAN</creator><creatorcontrib>CHEN WEI ; XU JIANGUO ; CHU YAO ; ZHOU LIN ; QIU TAIJIN ; LIU CHONG ; ZOU XIANG ; YUE JING ; CHEN JINGJING ; YAN SIJIE ; ZHAO LONGPAN</creatorcontrib><description>The invention discloses a rotor vent hole foreign matter identification method and system based on lightweight YOLOv4, and the method comprises the steps: collecting a vent hole foreign matter image, and carrying out the preprocessing of the image; constructing a ventilation hole foreign matter data set; constructing a lightweight foreign matter recognition model; based on the ventilation hole foreign matter data set, a lightweight foreign matter recognition model is trained; and testing the trained lightweight foreign matter identification model, and identifying the foreign matter in the vent hole. According to the method, various illumination brightness environments are simulated and corresponding video pictures are collected, so that the model learns rules implied behind the images, and data except a learning set with the same rule can also be properly output through a trained network; when the model faces unknown data, the model also has good prediction capability, and over-fitting and under-fitting are e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221011&amp;DB=EPODOC&amp;CC=CN&amp;NR=115170829A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221011&amp;DB=EPODOC&amp;CC=CN&amp;NR=115170829A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN WEI</creatorcontrib><creatorcontrib>XU JIANGUO</creatorcontrib><creatorcontrib>CHU YAO</creatorcontrib><creatorcontrib>ZHOU LIN</creatorcontrib><creatorcontrib>QIU TAIJIN</creatorcontrib><creatorcontrib>LIU CHONG</creatorcontrib><creatorcontrib>ZOU XIANG</creatorcontrib><creatorcontrib>YUE JING</creatorcontrib><creatorcontrib>CHEN JINGJING</creatorcontrib><creatorcontrib>YAN SIJIE</creatorcontrib><creatorcontrib>ZHAO LONGPAN</creatorcontrib><title>Generator rotor vent hole foreign matter monitoring and identifying system and method</title><description>The invention discloses a rotor vent hole foreign matter identification method and system based on lightweight YOLOv4, and the method comprises the steps: collecting a vent hole foreign matter image, and carrying out the preprocessing of the image; constructing a ventilation hole foreign matter data set; constructing a lightweight foreign matter recognition model; based on the ventilation hole foreign matter data set, a lightweight foreign matter recognition model is trained; and testing the trained lightweight foreign matter identification model, and identifying the foreign matter in the vent hole. According to the method, various illumination brightness environments are simulated and corresponding video pictures are collected, so that the model learns rules implied behind the images, and data except a learning set with the same rule can also be properly output through a trained network; when the model faces unknown data, the model also has good prediction capability, and over-fitting and under-fitting are e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAh1T81LLUosyS9SKMoHkWWpeSUKGfk5qQpp-UWpmel5CrmJJSWpRQq5-XmZQAWZeekKiXkpCpkpQIWZaZUgfnFlcUlqLlg4N7UkIz-Fh4E1LTGnOJUXSnMzKLq5hjh76KYW5MenFhckJgNtLYl39jM0NDU0N7AwsnQ0JkYNACjnOcU</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>CHEN WEI</creator><creator>XU JIANGUO</creator><creator>CHU YAO</creator><creator>ZHOU LIN</creator><creator>QIU TAIJIN</creator><creator>LIU CHONG</creator><creator>ZOU XIANG</creator><creator>YUE JING</creator><creator>CHEN JINGJING</creator><creator>YAN SIJIE</creator><creator>ZHAO LONGPAN</creator><scope>EVB</scope></search><sort><creationdate>20221011</creationdate><title>Generator rotor vent hole foreign matter monitoring and identifying system and method</title><author>CHEN WEI ; XU JIANGUO ; CHU YAO ; ZHOU LIN ; QIU TAIJIN ; LIU CHONG ; ZOU XIANG ; YUE JING ; CHEN JINGJING ; YAN SIJIE ; ZHAO LONGPAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115170829A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN WEI</creatorcontrib><creatorcontrib>XU JIANGUO</creatorcontrib><creatorcontrib>CHU YAO</creatorcontrib><creatorcontrib>ZHOU LIN</creatorcontrib><creatorcontrib>QIU TAIJIN</creatorcontrib><creatorcontrib>LIU CHONG</creatorcontrib><creatorcontrib>ZOU XIANG</creatorcontrib><creatorcontrib>YUE JING</creatorcontrib><creatorcontrib>CHEN JINGJING</creatorcontrib><creatorcontrib>YAN SIJIE</creatorcontrib><creatorcontrib>ZHAO LONGPAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN WEI</au><au>XU JIANGUO</au><au>CHU YAO</au><au>ZHOU LIN</au><au>QIU TAIJIN</au><au>LIU CHONG</au><au>ZOU XIANG</au><au>YUE JING</au><au>CHEN JINGJING</au><au>YAN SIJIE</au><au>ZHAO LONGPAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Generator rotor vent hole foreign matter monitoring and identifying system and method</title><date>2022-10-11</date><risdate>2022</risdate><abstract>The invention discloses a rotor vent hole foreign matter identification method and system based on lightweight YOLOv4, and the method comprises the steps: collecting a vent hole foreign matter image, and carrying out the preprocessing of the image; constructing a ventilation hole foreign matter data set; constructing a lightweight foreign matter recognition model; based on the ventilation hole foreign matter data set, a lightweight foreign matter recognition model is trained; and testing the trained lightweight foreign matter identification model, and identifying the foreign matter in the vent hole. According to the method, various illumination brightness environments are simulated and corresponding video pictures are collected, so that the model learns rules implied behind the images, and data except a learning set with the same rule can also be properly output through a trained network; when the model faces unknown data, the model also has good prediction capability, and over-fitting and under-fitting are e</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115170829A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Generator rotor vent hole foreign matter monitoring and identifying system and method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20WEI&rft.date=2022-10-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115170829A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true