System and method for classifying information in image

The invention provides a method for classifying information in an image, which comprises the following steps: a convolutional neural network receives an input image and generates a plurality of shared feature maps, an attention network generates a plurality of attention maps according to the shared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN PEIJUN, HUANG BAIXUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN PEIJUN
HUANG BAIXUAN
description The invention provides a method for classifying information in an image, which comprises the following steps: a convolutional neural network receives an input image and generates a plurality of shared feature maps, an attention network generates a plurality of attention maps according to the shared feature maps, a fusion circuit selects at least two attention maps from the attention maps to execute fusion operation so as to generate a fusion map, and the fusion map is used for generating the information in the image. And the classifier generates a classification result according to the fusion image. The architecture corresponding to the classification system provided by the invention can learn all related symptoms at the same time and is also specific enough, and each individual task can be evaluated. 本发明提供一种影像中信息的分类方法,包括:卷积神经网络接收一输入影像并产生多个共享特征图,注意力网络依据这些共享特征图产生多个注意力图,融合电路从这些注意力图中选择至少二个执行融合运算以产生融合图,以及分类器依据融合图产生分类结果。本发明提出的分类系统所对应的架构可以同时学习所有相关症状,并且也足够具体,可以评估每个单独的任务。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115147688A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115147688A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115147688A3</originalsourceid><addsrcrecordid>eNrjZDALriwuSc1VSMxLUchNLcnIT1FIyy9SSM5JLC7OTKvMzEtXyMwDiuQmlmTm5wHZCpm5iempPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDU0MTczMLC0ZgYNQClXi2r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method for classifying information in image</title><source>esp@cenet</source><creator>CHEN PEIJUN ; HUANG BAIXUAN</creator><creatorcontrib>CHEN PEIJUN ; HUANG BAIXUAN</creatorcontrib><description>The invention provides a method for classifying information in an image, which comprises the following steps: a convolutional neural network receives an input image and generates a plurality of shared feature maps, an attention network generates a plurality of attention maps according to the shared feature maps, a fusion circuit selects at least two attention maps from the attention maps to execute fusion operation so as to generate a fusion map, and the fusion map is used for generating the information in the image. And the classifier generates a classification result according to the fusion image. The architecture corresponding to the classification system provided by the invention can learn all related symptoms at the same time and is also specific enough, and each individual task can be evaluated. 本发明提供一种影像中信息的分类方法,包括:卷积神经网络接收一输入影像并产生多个共享特征图,注意力网络依据这些共享特征图产生多个注意力图,融合电路从这些注意力图中选择至少二个执行融合运算以产生融合图,以及分类器依据融合图产生分类结果。本发明提出的分类系统所对应的架构可以同时学习所有相关症状,并且也足够具体,可以评估每个单独的任务。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221004&amp;DB=EPODOC&amp;CC=CN&amp;NR=115147688A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221004&amp;DB=EPODOC&amp;CC=CN&amp;NR=115147688A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN PEIJUN</creatorcontrib><creatorcontrib>HUANG BAIXUAN</creatorcontrib><title>System and method for classifying information in image</title><description>The invention provides a method for classifying information in an image, which comprises the following steps: a convolutional neural network receives an input image and generates a plurality of shared feature maps, an attention network generates a plurality of attention maps according to the shared feature maps, a fusion circuit selects at least two attention maps from the attention maps to execute fusion operation so as to generate a fusion map, and the fusion map is used for generating the information in the image. And the classifier generates a classification result according to the fusion image. The architecture corresponding to the classification system provided by the invention can learn all related symptoms at the same time and is also specific enough, and each individual task can be evaluated. 本发明提供一种影像中信息的分类方法,包括:卷积神经网络接收一输入影像并产生多个共享特征图,注意力网络依据这些共享特征图产生多个注意力图,融合电路从这些注意力图中选择至少二个执行融合运算以产生融合图,以及分类器依据融合图产生分类结果。本发明提出的分类系统所对应的架构可以同时学习所有相关症状,并且也足够具体,可以评估每个单独的任务。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALriwuSc1VSMxLUchNLcnIT1FIyy9SSM5JLC7OTKvMzEtXyMwDiuQmlmTm5wHZCpm5iempPAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDU0MTczMLC0ZgYNQClXi2r</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>CHEN PEIJUN</creator><creator>HUANG BAIXUAN</creator><scope>EVB</scope></search><sort><creationdate>20221004</creationdate><title>System and method for classifying information in image</title><author>CHEN PEIJUN ; HUANG BAIXUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115147688A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN PEIJUN</creatorcontrib><creatorcontrib>HUANG BAIXUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN PEIJUN</au><au>HUANG BAIXUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method for classifying information in image</title><date>2022-10-04</date><risdate>2022</risdate><abstract>The invention provides a method for classifying information in an image, which comprises the following steps: a convolutional neural network receives an input image and generates a plurality of shared feature maps, an attention network generates a plurality of attention maps according to the shared feature maps, a fusion circuit selects at least two attention maps from the attention maps to execute fusion operation so as to generate a fusion map, and the fusion map is used for generating the information in the image. And the classifier generates a classification result according to the fusion image. The architecture corresponding to the classification system provided by the invention can learn all related symptoms at the same time and is also specific enough, and each individual task can be evaluated. 本发明提供一种影像中信息的分类方法,包括:卷积神经网络接收一输入影像并产生多个共享特征图,注意力网络依据这些共享特征图产生多个注意力图,融合电路从这些注意力图中选择至少二个执行融合运算以产生融合图,以及分类器依据融合图产生分类结果。本发明提出的分类系统所对应的架构可以同时学习所有相关症状,并且也足够具体,可以评估每个单独的任务。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115147688A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title System and method for classifying information in image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20PEIJUN&rft.date=2022-10-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115147688A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true