Point cloud completion method based on attention mechanism

The invention discloses a point cloud completion method based on an attention mechanism, and the method comprises the steps: firstly obtaining a data set needed by a point cloud completion algorithm, feeding an incomplete point cloud into an encoder, carrying out the extraction, obtaining a feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG LING, XU KE, LIU XINPU, MA YANXIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG LING
XU KE
LIU XINPU
MA YANXIN
description The invention discloses a point cloud completion method based on an attention mechanism, and the method comprises the steps: firstly obtaining a data set needed by a point cloud completion algorithm, feeding an incomplete point cloud into an encoder, carrying out the extraction, obtaining a feature vector of the incomplete point cloud, feeding the feature vector into a decoder, and generating a complete point cloud; performing quality evaluation on the generated point cloud by using the chamfering distance between the generated point cloud and the real point cloud to serve as a loss function to guide updating of neural network parameters; and finally, sending the actually scanned point cloud data into the trained encoder and decoder to generate a complete point cloud. The AGFA module is introduced to perform feature extraction on the existing geometric structure, the authenticity and better detail structure of the complemented point cloud shape are ensured, the CGFA module is adopted, the features of the prep
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115131245A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115131245A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115131245A3</originalsourceid><addsrcrecordid>eNrjZLAKyM_MK1FIzskvTVFIzs8tyEktyczPU8hNLcnIT1FISixOTVEA8hNLSlLzoDLJGYl5mcW5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDU0NjQyMTU0ZgYNQCNdi8y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Point cloud completion method based on attention mechanism</title><source>esp@cenet</source><creator>WANG LING ; XU KE ; LIU XINPU ; MA YANXIN</creator><creatorcontrib>WANG LING ; XU KE ; LIU XINPU ; MA YANXIN</creatorcontrib><description>The invention discloses a point cloud completion method based on an attention mechanism, and the method comprises the steps: firstly obtaining a data set needed by a point cloud completion algorithm, feeding an incomplete point cloud into an encoder, carrying out the extraction, obtaining a feature vector of the incomplete point cloud, feeding the feature vector into a decoder, and generating a complete point cloud; performing quality evaluation on the generated point cloud by using the chamfering distance between the generated point cloud and the real point cloud to serve as a loss function to guide updating of neural network parameters; and finally, sending the actually scanned point cloud data into the trained encoder and decoder to generate a complete point cloud. The AGFA module is introduced to perform feature extraction on the existing geometric structure, the authenticity and better detail structure of the complemented point cloud shape are ensured, the CGFA module is adopted, the features of the prep</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220930&amp;DB=EPODOC&amp;CC=CN&amp;NR=115131245A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220930&amp;DB=EPODOC&amp;CC=CN&amp;NR=115131245A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LING</creatorcontrib><creatorcontrib>XU KE</creatorcontrib><creatorcontrib>LIU XINPU</creatorcontrib><creatorcontrib>MA YANXIN</creatorcontrib><title>Point cloud completion method based on attention mechanism</title><description>The invention discloses a point cloud completion method based on an attention mechanism, and the method comprises the steps: firstly obtaining a data set needed by a point cloud completion algorithm, feeding an incomplete point cloud into an encoder, carrying out the extraction, obtaining a feature vector of the incomplete point cloud, feeding the feature vector into a decoder, and generating a complete point cloud; performing quality evaluation on the generated point cloud by using the chamfering distance between the generated point cloud and the real point cloud to serve as a loss function to guide updating of neural network parameters; and finally, sending the actually scanned point cloud data into the trained encoder and decoder to generate a complete point cloud. The AGFA module is introduced to perform feature extraction on the existing geometric structure, the authenticity and better detail structure of the complemented point cloud shape are ensured, the CGFA module is adopted, the features of the prep</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAKyM_MK1FIzskvTVFIzs8tyEktyczPU8hNLcnIT1FISixOTVEA8hNLSlLzoDLJGYl5mcW5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDU0NjQyMTU0ZgYNQCNdi8y</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>WANG LING</creator><creator>XU KE</creator><creator>LIU XINPU</creator><creator>MA YANXIN</creator><scope>EVB</scope></search><sort><creationdate>20220930</creationdate><title>Point cloud completion method based on attention mechanism</title><author>WANG LING ; XU KE ; LIU XINPU ; MA YANXIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115131245A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LING</creatorcontrib><creatorcontrib>XU KE</creatorcontrib><creatorcontrib>LIU XINPU</creatorcontrib><creatorcontrib>MA YANXIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LING</au><au>XU KE</au><au>LIU XINPU</au><au>MA YANXIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Point cloud completion method based on attention mechanism</title><date>2022-09-30</date><risdate>2022</risdate><abstract>The invention discloses a point cloud completion method based on an attention mechanism, and the method comprises the steps: firstly obtaining a data set needed by a point cloud completion algorithm, feeding an incomplete point cloud into an encoder, carrying out the extraction, obtaining a feature vector of the incomplete point cloud, feeding the feature vector into a decoder, and generating a complete point cloud; performing quality evaluation on the generated point cloud by using the chamfering distance between the generated point cloud and the real point cloud to serve as a loss function to guide updating of neural network parameters; and finally, sending the actually scanned point cloud data into the trained encoder and decoder to generate a complete point cloud. The AGFA module is introduced to perform feature extraction on the existing geometric structure, the authenticity and better detail structure of the complemented point cloud shape are ensured, the CGFA module is adopted, the features of the prep</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115131245A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Point cloud completion method based on attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LING&rft.date=2022-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115131245A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true