Method and system for assisting in building radiomics model based on semi-supervised learning

The invention discloses a method for assisting in building a radiomics model based on semi-supervised learning. The method comprises the following steps: acquiring a to-be-trained data set with a label and a to-be-trained data set without a label; collecting a data set without a label from the inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIN YAOHUI, LI HUI, XIAO JIANHANG, YU NIANHUI, GUO WEI, ZHAN QIUSONG, WANG QINGQING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIN YAOHUI
LI HUI
XIAO JIANHANG
YU NIANHUI
GUO WEI
ZHAN QIUSONG
WANG QINGQING
description The invention discloses a method for assisting in building a radiomics model based on semi-supervised learning. The method comprises the following steps: acquiring a to-be-trained data set with a label and a to-be-trained data set without a label; collecting a data set without a label from the internet according to the format and the classification purpose of the data with the label; preprocessing a data set with a label and a data set without a label; randomly dividing the labeled data set into a training set and a test set; fitting a plurality of classifiers for the training set, performing voting and scoring, adjusting a label threshold value, and labeling non-label data; screening the features of the training set, and screening the features of the training set and the whole labeled data; and classifying and fitting the features in the training set, and classifying and de-fitting the features in the training set and the labeled data set. According to the method, the stability of the repeated experiment eff
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115114984A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115114984A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115114984A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbNxIeodxgN0EaygSymKG125lTJtpjqQZEImFby9FjyAq_94vD839wuVpzjA6EDfWijAIBlQlbVwfABH6Eb2buKMjiVwrxDEkYcOlRxIBKXAlY6J8osn5Qlz_D6WZjagV1r9dmHWp-OtOVeUpCVN2FOk0jZXa7fW1vtdfdj803wAAQY8Xw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and system for assisting in building radiomics model based on semi-supervised learning</title><source>esp@cenet</source><creator>JIN YAOHUI ; LI HUI ; XIAO JIANHANG ; YU NIANHUI ; GUO WEI ; ZHAN QIUSONG ; WANG QINGQING</creator><creatorcontrib>JIN YAOHUI ; LI HUI ; XIAO JIANHANG ; YU NIANHUI ; GUO WEI ; ZHAN QIUSONG ; WANG QINGQING</creatorcontrib><description>The invention discloses a method for assisting in building a radiomics model based on semi-supervised learning. The method comprises the following steps: acquiring a to-be-trained data set with a label and a to-be-trained data set without a label; collecting a data set without a label from the internet according to the format and the classification purpose of the data with the label; preprocessing a data set with a label and a data set without a label; randomly dividing the labeled data set into a training set and a test set; fitting a plurality of classifiers for the training set, performing voting and scoring, adjusting a label threshold value, and labeling non-label data; screening the features of the training set, and screening the features of the training set and the whole labeled data; and classifying and fitting the features in the training set, and classifying and de-fitting the features in the training set and the labeled data set. According to the method, the stability of the repeated experiment eff</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220927&amp;DB=EPODOC&amp;CC=CN&amp;NR=115114984A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220927&amp;DB=EPODOC&amp;CC=CN&amp;NR=115114984A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIN YAOHUI</creatorcontrib><creatorcontrib>LI HUI</creatorcontrib><creatorcontrib>XIAO JIANHANG</creatorcontrib><creatorcontrib>YU NIANHUI</creatorcontrib><creatorcontrib>GUO WEI</creatorcontrib><creatorcontrib>ZHAN QIUSONG</creatorcontrib><creatorcontrib>WANG QINGQING</creatorcontrib><title>Method and system for assisting in building radiomics model based on semi-supervised learning</title><description>The invention discloses a method for assisting in building a radiomics model based on semi-supervised learning. The method comprises the following steps: acquiring a to-be-trained data set with a label and a to-be-trained data set without a label; collecting a data set without a label from the internet according to the format and the classification purpose of the data with the label; preprocessing a data set with a label and a data set without a label; randomly dividing the labeled data set into a training set and a test set; fitting a plurality of classifiers for the training set, performing voting and scoring, adjusting a label threshold value, and labeling non-label data; screening the features of the training set, and screening the features of the training set and the whole labeled data; and classifying and fitting the features in the training set, and classifying and de-fitting the features in the training set and the labeled data set. According to the method, the stability of the repeated experiment eff</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbNxIeodxgN0EaygSymKG125lTJtpjqQZEImFby9FjyAq_94vD839wuVpzjA6EDfWijAIBlQlbVwfABH6Eb2buKMjiVwrxDEkYcOlRxIBKXAlY6J8osn5Qlz_D6WZjagV1r9dmHWp-OtOVeUpCVN2FOk0jZXa7fW1vtdfdj803wAAQY8Xw</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>JIN YAOHUI</creator><creator>LI HUI</creator><creator>XIAO JIANHANG</creator><creator>YU NIANHUI</creator><creator>GUO WEI</creator><creator>ZHAN QIUSONG</creator><creator>WANG QINGQING</creator><scope>EVB</scope></search><sort><creationdate>20220927</creationdate><title>Method and system for assisting in building radiomics model based on semi-supervised learning</title><author>JIN YAOHUI ; LI HUI ; XIAO JIANHANG ; YU NIANHUI ; GUO WEI ; ZHAN QIUSONG ; WANG QINGQING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115114984A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIN YAOHUI</creatorcontrib><creatorcontrib>LI HUI</creatorcontrib><creatorcontrib>XIAO JIANHANG</creatorcontrib><creatorcontrib>YU NIANHUI</creatorcontrib><creatorcontrib>GUO WEI</creatorcontrib><creatorcontrib>ZHAN QIUSONG</creatorcontrib><creatorcontrib>WANG QINGQING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIN YAOHUI</au><au>LI HUI</au><au>XIAO JIANHANG</au><au>YU NIANHUI</au><au>GUO WEI</au><au>ZHAN QIUSONG</au><au>WANG QINGQING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and system for assisting in building radiomics model based on semi-supervised learning</title><date>2022-09-27</date><risdate>2022</risdate><abstract>The invention discloses a method for assisting in building a radiomics model based on semi-supervised learning. The method comprises the following steps: acquiring a to-be-trained data set with a label and a to-be-trained data set without a label; collecting a data set without a label from the internet according to the format and the classification purpose of the data with the label; preprocessing a data set with a label and a data set without a label; randomly dividing the labeled data set into a training set and a test set; fitting a plurality of classifiers for the training set, performing voting and scoring, adjusting a label threshold value, and labeling non-label data; screening the features of the training set, and screening the features of the training set and the whole labeled data; and classifying and fitting the features in the training set, and classifying and de-fitting the features in the training set and the labeled data set. According to the method, the stability of the repeated experiment eff</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115114984A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Method and system for assisting in building radiomics model based on semi-supervised learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIN%20YAOHUI&rft.date=2022-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115114984A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true