Optimized control method and system for boiler soot blower based on reinforcement learning

The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIONG GUANGSI, XIAO HONG, HUANG GUANRU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIONG GUANGSI
XIAO HONG
HUANG GUANRU
description The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, an action state value and a reward value of the boiler soot blower according to the state value and a strategy network, and building an experience pool; training a value network, a target value network, a target strategy network and the strategy network based on experience data in the experience pool to obtain a soot blower optimization control model; according to the action value and the reverse action value of the boiler soot blower and the soot blower optimization control model, control parameters of the soot blower are determined, and the technical problem that an existing soot blowing control method is insufficient in real-time dynamic control capacity on the soot blower under the multi-working-condition enviro
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115097729A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115097729A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115097729A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoP6wcIRpGQUoJipY2VTbhcXuLB3W64WxD9eq_wA6xmipl58bhN6oL7oCcrrFE8BehTejLcU3onRaBBInXiPCIlEaXOyyt7Z1LehCnCcW4sAljJw0R2PC6L2WB8wurHRbE-n-7NZYNJWqTJWDC0ba5ledjWVbWrj_t_mi9lWDuT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optimized control method and system for boiler soot blower based on reinforcement learning</title><source>esp@cenet</source><creator>XIONG GUANGSI ; XIAO HONG ; HUANG GUANRU</creator><creatorcontrib>XIONG GUANGSI ; XIAO HONG ; HUANG GUANRU</creatorcontrib><description>The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, an action state value and a reward value of the boiler soot blower according to the state value and a strategy network, and building an experience pool; training a value network, a target value network, a target strategy network and the strategy network based on experience data in the experience pool to obtain a soot blower optimization control model; according to the action value and the reverse action value of the boiler soot blower and the soot blower optimization control model, control parameters of the soot blower are determined, and the technical problem that an existing soot blowing control method is insufficient in real-time dynamic control capacity on the soot blower under the multi-working-condition enviro</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220923&amp;DB=EPODOC&amp;CC=CN&amp;NR=115097729A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25573,76557</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220923&amp;DB=EPODOC&amp;CC=CN&amp;NR=115097729A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIONG GUANGSI</creatorcontrib><creatorcontrib>XIAO HONG</creatorcontrib><creatorcontrib>HUANG GUANRU</creatorcontrib><title>Optimized control method and system for boiler soot blower based on reinforcement learning</title><description>The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, an action state value and a reward value of the boiler soot blower according to the state value and a strategy network, and building an experience pool; training a value network, a target value network, a target strategy network and the strategy network based on experience data in the experience pool to obtain a soot blower optimization control model; according to the action value and the reverse action value of the boiler soot blower and the soot blower optimization control model, control parameters of the soot blower are determined, and the technical problem that an existing soot blowing control method is insufficient in real-time dynamic control capacity on the soot blower under the multi-working-condition enviro</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoP6wcIRpGQUoJipY2VTbhcXuLB3W64WxD9eq_wA6xmipl58bhN6oL7oCcrrFE8BehTejLcU3onRaBBInXiPCIlEaXOyyt7Z1LehCnCcW4sAljJw0R2PC6L2WB8wurHRbE-n-7NZYNJWqTJWDC0ba5ledjWVbWrj_t_mi9lWDuT</recordid><startdate>20220923</startdate><enddate>20220923</enddate><creator>XIONG GUANGSI</creator><creator>XIAO HONG</creator><creator>HUANG GUANRU</creator><scope>EVB</scope></search><sort><creationdate>20220923</creationdate><title>Optimized control method and system for boiler soot blower based on reinforcement learning</title><author>XIONG GUANGSI ; XIAO HONG ; HUANG GUANRU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115097729A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>XIONG GUANGSI</creatorcontrib><creatorcontrib>XIAO HONG</creatorcontrib><creatorcontrib>HUANG GUANRU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIONG GUANGSI</au><au>XIAO HONG</au><au>HUANG GUANRU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optimized control method and system for boiler soot blower based on reinforcement learning</title><date>2022-09-23</date><risdate>2022</risdate><abstract>The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, an action state value and a reward value of the boiler soot blower according to the state value and a strategy network, and building an experience pool; training a value network, a target value network, a target strategy network and the strategy network based on experience data in the experience pool to obtain a soot blower optimization control model; according to the action value and the reverse action value of the boiler soot blower and the soot blower optimization control model, control parameters of the soot blower are determined, and the technical problem that an existing soot blowing control method is insufficient in real-time dynamic control capacity on the soot blower under the multi-working-condition enviro</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115097729A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Optimized control method and system for boiler soot blower based on reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIONG%20GUANGSI&rft.date=2022-09-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115097729A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true