Optimized control method and system for boiler soot blower based on reinforcement learning
The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIONG GUANGSI XIAO HONG HUANG GUANRU |
description | The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, an action state value and a reward value of the boiler soot blower according to the state value and a strategy network, and building an experience pool; training a value network, a target value network, a target strategy network and the strategy network based on experience data in the experience pool to obtain a soot blower optimization control model; according to the action value and the reverse action value of the boiler soot blower and the soot blower optimization control model, control parameters of the soot blower are determined, and the technical problem that an existing soot blowing control method is insufficient in real-time dynamic control capacity on the soot blower under the multi-working-condition enviro |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115097729A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115097729A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115097729A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoP6wcIRpGQUoJipY2VTbhcXuLB3W64WxD9eq_wA6xmipl58bhN6oL7oCcrrFE8BehTejLcU3onRaBBInXiPCIlEaXOyyt7Z1LehCnCcW4sAljJw0R2PC6L2WB8wurHRbE-n-7NZYNJWqTJWDC0ba5ledjWVbWrj_t_mi9lWDuT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optimized control method and system for boiler soot blower based on reinforcement learning</title><source>esp@cenet</source><creator>XIONG GUANGSI ; XIAO HONG ; HUANG GUANRU</creator><creatorcontrib>XIONG GUANGSI ; XIAO HONG ; HUANG GUANRU</creatorcontrib><description>The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, an action state value and a reward value of the boiler soot blower according to the state value and a strategy network, and building an experience pool; training a value network, a target value network, a target strategy network and the strategy network based on experience data in the experience pool to obtain a soot blower optimization control model; according to the action value and the reverse action value of the boiler soot blower and the soot blower optimization control model, control parameters of the soot blower are determined, and the technical problem that an existing soot blowing control method is insufficient in real-time dynamic control capacity on the soot blower under the multi-working-condition enviro</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220923&DB=EPODOC&CC=CN&NR=115097729A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25573,76557</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220923&DB=EPODOC&CC=CN&NR=115097729A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIONG GUANGSI</creatorcontrib><creatorcontrib>XIAO HONG</creatorcontrib><creatorcontrib>HUANG GUANRU</creatorcontrib><title>Optimized control method and system for boiler soot blower based on reinforcement learning</title><description>The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, an action state value and a reward value of the boiler soot blower according to the state value and a strategy network, and building an experience pool; training a value network, a target value network, a target strategy network and the strategy network based on experience data in the experience pool to obtain a soot blower optimization control model; according to the action value and the reverse action value of the boiler soot blower and the soot blower optimization control model, control parameters of the soot blower are determined, and the technical problem that an existing soot blowing control method is insufficient in real-time dynamic control capacity on the soot blower under the multi-working-condition enviro</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoP6wcIRpGQUoJipY2VTbhcXuLB3W64WxD9eq_wA6xmipl58bhN6oL7oCcrrFE8BehTejLcU3onRaBBInXiPCIlEaXOyyt7Z1LehCnCcW4sAljJw0R2PC6L2WB8wurHRbE-n-7NZYNJWqTJWDC0ba5ledjWVbWrj_t_mi9lWDuT</recordid><startdate>20220923</startdate><enddate>20220923</enddate><creator>XIONG GUANGSI</creator><creator>XIAO HONG</creator><creator>HUANG GUANRU</creator><scope>EVB</scope></search><sort><creationdate>20220923</creationdate><title>Optimized control method and system for boiler soot blower based on reinforcement learning</title><author>XIONG GUANGSI ; XIAO HONG ; HUANG GUANRU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115097729A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>XIONG GUANGSI</creatorcontrib><creatorcontrib>XIAO HONG</creatorcontrib><creatorcontrib>HUANG GUANRU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIONG GUANGSI</au><au>XIAO HONG</au><au>HUANG GUANRU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optimized control method and system for boiler soot blower based on reinforcement learning</title><date>2022-09-23</date><risdate>2022</risdate><abstract>The invention discloses an optimization control method and system for a boiler soot blower based on reinforcement learning, and relates to the technical field of boiler soot blowing, and the method comprises the steps: obtaining a state value of the boiler soot blower, determining an action value, an action state value and a reward value of the boiler soot blower according to the state value and a strategy network, and building an experience pool; training a value network, a target value network, a target strategy network and the strategy network based on experience data in the experience pool to obtain a soot blower optimization control model; according to the action value and the reverse action value of the boiler soot blower and the soot blower optimization control model, control parameters of the soot blower are determined, and the technical problem that an existing soot blowing control method is insufficient in real-time dynamic control capacity on the soot blower under the multi-working-condition enviro</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115097729A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING COUNTING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Optimized control method and system for boiler soot blower based on reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIONG%20GUANGSI&rft.date=2022-09-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115097729A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |